Browsing by Author "Usta, H."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access The design and fabrication of supramolecular semiconductor nanowires formed by benzothienobenzothiophene (BTBT)-conjugated peptides(Royal Society of Chemistry, 2018) Khalily, M. A.; Usta, H.; Ozdemir, M.; Bakan, G.; Dikecoglu, F. B.; Edwards-Gayle, C.; Hutchinson, J. A.; Hamley, I. W.; Dana, A.; Güler, Mustafa O.π-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT π-core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C3-COHN-Ahx-VVAGKK-Am) and the C8-BTBT-peptide (C8-BTBT-C3-COHN-Ahx-VVAGKK-Am), as β-sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(±1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type π-π interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 × 10-6 S cm-1. The BTBT π-core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.Item Open Access Electrochemical polymerization of ambipolar carbonyl-functionalized indenofluorene with memristive properties(Elsevier, 2019) Figà, V.; Usta, H.; Macaluso, R.; Salzner, Ulrike; Özdemir, M.; Kulyk, B.; Krupka, O.; Bruno, M.Carbonyl-functionalized indenofluorene was electropolymerized with a high faradaic efficiency of 85% and the solid state properties of the resulting polymeric thin films were investigated. They displayed modular optical properties depending on their oxidation state. The approach used for inorganic semiconductors was applied to polyindeonofluorene derivative. Mott-Schottky analysis evidenced a switching from p-type to n-type electrical conduction, suggesting an ambipolar behaviour of the polymer. As an application, flexible organic memristors were fabricated and resistive switching properties were observed.Item Unknown Organic light-emitting physically unclonable functions(Wiley-VCH Verlag GmbH & Co. KGaA, 2021-12-22) Kayacı, N.; Özdemir, R.; Kalay, M.; Kiremitler, N. B.; Usta, H.; Önses, Mustafa SerdarThe development of novel physically unclonable functions (PUFs) is of growing interest and fluorescent organic semiconductors (f-OSCs) offer unique advantages of structural versatility, solution-processability, ease of processing, and great tuning ability of their physicochemical/optoelectronic/spectroscopic properties. The design and ambient atmosphere facile fabrication of a unique organic light-emitting physically unclonable function (OLE-PUF) based on a green-emissive fluorescent oligo(p-phenyleneethynylene) molecule is reported. The OLE-PUFs have been prepared by one-step, brief (5 min) thermal annealing of spin-coated nanoscopic films (≈40 nm) at a modest temperature (170 °C), which results in efficient surface dewetting to form randomly positioned/sized hemispherical features with bright fluorescence. The random positioning of molecular domains generated the unclonable surface with excellent uniformity (0.50), uniqueness (0.49), and randomness (p > 0.01); whereas the distinctive photophysical and structural properties of the molecule created the additional security layers (fluorescence profile, excited-state decay dynamics, Raman mapping/spectrum, and infrared spectrum) for multiplex encoding. The OLE-PUFs on substrates of varying chemical structures, surface energies and flexibility, and direct deposition on goods via drop-casting are demonstrated. The OLE-PUFs immersed in water, exposed to mechanical abrasion, and read-out repeatedly via fluorescence imaging showed great stability. These findings clearly demonstrate that rationally engineered solution-processable f-OSCs have a great potential to become a key player in the development of new-generation PUFs.