Browsing by Author "Urel, Mustafa"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Amyloid inspired self-assembled peptide nanofibers(American Chemical Society, 2012) Çınar, Göksu; Ceylan, Hakan; Urel, Mustafa; Erkal, Turan S.; Tekin, E. Deniz; Tekinay, Ayse B.; Dâna, Aykutlu; Güler, Mustafa O.Amyloid peptides are important components in many degenerative diseases as well as in maintaining cellular metabolism. Their unique stable structure provides new insights in developing new materials. Designing bioinspired self-assembling peptides is essential to generate new forms of hierarchical nanostructures. Here we present oppositely charged amyloid inspired peptides (AIPs), which rapidly self-assemble into nanofibers at pH 7 upon mixing in water caused by noncovalent interactions. Mechanical properties of the gels formed by self-assembled AIP nanofibers were analyzed with oscillatory rheology. AIP gels exhibited strong mechanical characteristics superior to gels formed by self-assembly of previously reported synthetic short peptides. Rheological studies of gels composed of oppositely charged mixed AIP molecules (AIP-1 + 2) revealed superior mechanical stability compared to individual peptide networks (AIP-1 and AIP-2) formed by neutralization of net charges through pH change. Adhesion and elasticity properties of AIP mixed nanofibers and charge neutralized AIP-1, AIP-2 nanofibers were analyzed by high resolution force-distance mapping using atomic force microscopy (AFM). Nanomechanical characterization of self-assembled AIP-1 + 2, AIP-1, and AIP-2 nanofibers also confirmed macroscopic rheology results, and mechanical stability of AIP mixed nanofibers was higher compared to individual AIP-1 and AIP-2 nanofibers self-assembled at acidic and basic pH, respectively. Experimental results were supported with molecular dynamics simulations by considering potential noncovalent interactions between the amino acid residues and possible aggregate forms. In addition, HUVEC cells were cultured on AIP mixed nanofibers at pH 7 and biocompatibility and collagen mimetic scaffold properties of the nanofibrous system were observed. Encapsulation of a zwitterionic dye (rhodamine B) within AIP nanofiber network was accomplished at physiological conditions to demonstrate that this network can be utilized for inclusion of soluble factors as a scaffold for cell culture studies. © 2012 American Chemical Society.Item Open Access Biocompatible electroactive tetra (aniline)-conjugated peptide nanofibers for neural differentiation(American Chemical Society, 2018) Arioz, Idil; Erol, Ozlem; Bakan, Gokhan; Dikecoglu, F. Begum; Topal, Ahmet E.; Urel, Mustafa; Dana, Aykutlu; Tekinay, Ayse B.; Güler, Mustafa O.Peripheral nerve injuries cause devastating problems for the quality of patients' lives, and regeneration following damage to the peripheral nervous system is limited depending on the degree of the damage. Use of nanobiomaterials can provide therapeutic approaches for the treatment of peripheral nerve injuries. Electroactive biomaterials, in particular, can provide a promising cure for the regeneration of nerve defects. Here, a supramolecular electroactive nanosystem with tetra(aniline) (TA)-containing peptide nanofibers was developed and utilized for nerve regeneration. Self-assembled TA-conjugated peptide nanofibers demonstrated electroactive behavior. The electroactive self-assembled peptide nanofibers formed a well-defined three-dimensional nanofiber network mimicking the extracellular matrix of the neuronal cells. Neurite outgrowth was improved on the electroactive TA nanofiber gels. The neural differentiation of PC-12 cells was more advanced on electroactive peptide nanofiber gels, and these biomaterials are promising for further use in therapeutic neural regeneration applications.Item Open Access Mussel inspired dynamic cross-linking of self-healing peptide nanofiber network(Wiley, 2013) Ceylan, Hakan; Urel, Mustafa; Erkal, Turan S.; Tekinay, Ayse B.; Dana, Aykutlu; Güler, Mustafa O.A general drawback of supramolecular peptide networks is their weak mechanical properties. In order to overcome a similar challenge, mussels have adapted to a pH-dependent iron complexation strategy for adhesion and curing. This strategy also provides successful stiffening and self-healing properties. The present study is inspired by the mussel curing strategy to establish iron cross-link points in self-assembled peptide networks. The impact of peptide-iron complexation on the morphology and secondary structure of the supramolecular nanofibers is characterized by scanning electron microscopy, circular dichroism and Fourier transform infrared spectroscopy. Mechanical properties of the cross-linked network are probed by small angle oscillatory rheology and nanoindentation by atomic force microscopy. It is shown that iron complexation has no influence on self-assembly and β-sheet-driven elongation of the nanofibers. On the other hand, the organic-inorganic hybrid network of iron cross-linked nanofibers demonstrates strong mechanical properties comparable to that of covalently cross-linked network. Strikingly, iron cross-linking does not inhibit intrinsic reversibility of supramolecular peptide polymers into disassembled building blocks and the self-healing ability upon high shear load. The strategy described here could be extended to improve mechanical properties of a wide range of supramolecular polymer networks. A simple and versatile method for improving mechanical performance of supramolecular polymers is described. Inspired by a mussel curing mechanism, reversible iron cross-linking into a self-assembled peptide network significantly enhances the mechanical properties while having no impact on the β-sheet-driven self-assembly. The network retains its pH-dependent reversibility and self-healing properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.