Browsing by Author "Turduev, M."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Chemical concentration map building through bacterial foraging optimization based search algorithm by mobile robots(IEEE, 2010) Turduev, M.; Kırtay, Murat; Sousa P.; Gazi V.; Marques L.In this article we present implementation of Bacterial Foraging Optimization algorithm inspired search by multiple robots in an unknown area in order to find the region with highest chemical gas concentration as well as to build the chemical gas concentration map. The searching and map building tasks are accomplished by using mobile robots equipped with smart transducers for gas sensing called "KheNose". Robots perform the search autonomously via bacterial chemotactic behavior. Moreover, simultaneously the robots send their sensor readings of the chemical concentration and their position data to a remote computer (a base station), where the data is combined, interpolated, and filtered to form an real-time map of the chemical gas concentration in the environment. ©2010 IEEE.Item Open Access Enhanced superprism effect in symmetry reduced photonic crystals(American Institute of Physics, 2018) Gumus, M.; Giden, I. H.; Akcaalan, O.; Turduev, M.; Kurt, H.We propose compact S-vector superprism providing broadband wavelength sensitivity within a/λ = 0.610-0.635, where "a" is the lattice constant, λ is the incident wavelength, and S denotes the Poynting vector. The reported configuration overcomes strong beam divergence and complex beam generation due to the self-collimation ability of the low symmetric primitive photonic crystal (PhC) cells. Analytical calculations of equi-frequency contours, photonic band structures, and group velocity dispersions are performed by solving Maxwell's equations and using the plane wave expansion method. Besides, finite-difference time-domain analyses are also conducted. The designed superprism induces large refracted angle variation for different frequencies when the incident angle is fixed: 4% change of incident frequencies results in approximately 40° deflected angle difference with a maximum 68.9° deflection angle inside the PhC. Meanwhile, for a fixed incident wavelength, a large output variation occurs if the incident angle is altered. Microwave experimental results are found to be in good agreement with the numerical analyses.Item Open Access Theoretical and experimental investigations of asymmetric light transport in graded index photonic crystal waveguides(AIP Publishing, 2014) Giden, I. H.; Yilmaz, D.; Turduev, M.; Kurt, H.; Colak, E.; Özbay, EkmelTo provide asymmetric propagation of light, we propose a graded index photonic crystal (GRIN PC) based waveguide configuration that is formed by introducing line and point defects as well as intentional perturbations inside the structure. The designed system utilizes isotropic materials and is purely reciprocal, linear, and time-independent, since neither magneto-optical materials are used nor time-reversal symmetry is broken. The numerical results show that the proposed scheme based on the spatial-inversion symmetry breaking has different forward (with a peak value of 49.8%) and backward transmissions (4.11% at most) as well as relatively small round-trip transmission (at most 7.11%) in a large operational bandwidth of 52.6 nm. The signal contrast ratio of the designed configuration is above 0.80 in the telecom wavelengths of 1523.5-1576.1 nm. An experimental measurement is also conducted in the microwave regime: A strong asymmetric propagation characteristic is observed within the frequency interval of 12.8 GHz-13.3 GHz. The numerical and experimental results confirm the asymmetric transmission behavior of the proposed GRIN PC waveguide. (C) 2014 AIP Publishing LLC.Item Open Access Two-dimensional complex parity-time-symmetric photonic structures(American Physical Society, 2015-02) Turduev, M.; Botey, M.; Giden, I.; Herrero, R.; Kurt, H.; Özbay, Ekmel; Staliunas, K.We propose a simple realistic two-dimensional complex parity-time-symmetric photonic structure that is described by a non-Hermitian potential but possesses real-valued eigenvalues. The concept is developed from basic physical considerations to provide asymmetric coupling between harmonic wave components of the electromagnetic field. The structure results in a nonreciprocal chirality and asymmetric transmission between in- and out-coupling channels into the structure. The analytical results are supported by a numerical study of the Bloch-like mode formations and calculations of a realistic planar semiconductor structure. © 2015 American Physical Society.