Browsing by Author "Tuna, H."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Image description using a multiplier-less operator(IEEE, 2009-06-05) Tuna, H.; Onaran, I.; Çetin, A. EnisA fast algorithm for image classification based on a computationally efficient operator forming a semigroup on real numbers is developed. The new operator does not require any multiplications. The co-difference matrix based on the new operator is defined and an image descriptor using the co-difference matrix is developed. In the proposed method, the multiplication operation of the well-known covariance method is replaced by the new operator. The proposed method is experimentally compared with the regular covariance matrix method. The proposed descriptor performs as well as the the regular covariance method without performing any multiplications. Texture recognition and licence plate identification examples are presented.Item Open Access Model based computerized ionospheric tomography in space and time(Elsevier, 2018) Tuna, H.; Arıkan, Orhan; Arikan, F.Reconstruction of the ionospheric electron density distribution in space and time not only provide basis for better understanding the physical nature of the ionosphere, but also provide improvements in various applications including HF communication. Recently developed IONOLAB-CIT technique provides physically admissible 3D model of the ionosphere by using both Slant Total Electron Content (STEC) measurements obtained from a GPS satellite - receiver network and IRI-Plas model. IONOLAB-CIT technique optimizes IRI-Plas model parameters in the region of interest such that the synthetic STEC computations obtained from the IRI-Plas model are in accordance with the actual STEC measurements. In this work, the IONOLAB-CIT technique is extended to provide reconstructions both in space and time. This extension exploits the temporal continuity of the ionosphere to provide more reliable reconstructions with a reduced computational load. The proposed 4D-IONOLAB-CIT technique is validated on real measurement data obtained from TNPGN-Active GPS receiver network in Turkey.Item Open Access Online user‐friendly slant total electron content computation from IRI‐Plas: IRI‐Plas‐STEC(Wiley-Blackwell Publishing, Inc., 2014-01) Tuna, H.; Arıkan, Orhan; Arikan, F.; Gulyaeva, T. L.; Sezen, U.Slant total electron content (STEC), the total number of free electrons on a ray path, is an important space weather observable. STEC is the main input for computerized ionospheric tomography (CIT). STEC can be estimated using the dual-frequency GPS receivers. GPS-STEC contains the space weather variability, yet the estimates are prone to measurement and instrument errors that are not related to the physical structure of the ionosphere. International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) is the international standard climatic model of ionosphere and plasmasphere, providing vertical electron density profiles for a desired date, time, and location. IRI-Plas is used as the background model in CIT. Computation of STEC from IRI-Plas is a tedious task for researchers due to extensive geodetic calculations and IRI-Plas runs. In this study, IONOLAB group introduces a new space weather service to facilitate the computation of STEC from IRI-Plas (IRI-Plas-STEC) at www.ionolab.org. The IRI-Plas-STEC can be computed online for a desired location, date, hour, elevation, and azimuth angle. The user-friendly interface also provides means for computation of IRI-STEC for a desired location and date to indicate the variability in hour of the day, elevation, or azimuth angles. The desired location can be chosen as a GPS receiver in International GNSS Service (IGS) or EUREF Permanent Network (EPN). Also instead of specifying elevation and azimuth angles, the user can directly choose from the GPS satellites and obtain IRI-Plas-STEC for a desired date and/or hour. The computed IRI-Plas-STEC values are presented directly on the screen or via e-mail as both text and plots. Key Points Online, automatic, Slant Total Electron Content is computed as IRI-Plas-TEC IRI-Plas-STEC is available from www.ionolab.org for desired date, hour, and location IRI-Plas-STEC is provided via e-mail in both graphical and text format ©2014. American Geophysical Union. All Rights Reserved.Item Open Access Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance(KeAi Communications Co., 2016) Arikan, F.; Shukurov, S.; Tuna, H.; Arıkan, Orhan; Gulyaeva, T. L.Total Electron Content (TEC) is an important observable parameter of the ionosphere which forms the main source of error for space based navigation and positioning systems. Since the deployment of Global Navigation Satellite Systems (GNSS), cost-effective estimation of TEC between the earth based receiver and Global Positioning System (GPS) satellites became the major means of investigation of local and regional disturbance for earthquake precursor and augmentation system studies. International Reference Ionosphere (IRI) extended to plasmasphere (IRI-Plas) is the most developed ionospheric and plasmaspheric climatic model that provides hourly, monthly median of electron density distribution globally. Recently, IONOLAB group (www.ionolab.org) has presented a new online space weather service that can compute slant TEC (STEC) on a desired ray path for a given date and time using IRI-Plas model (IRI-Plas-STEC). In this study, the performance of the model based STEC is compared with GPS-STEC computed according to the estimation method developed by the IONOLAB group and includes the receiver bias as IONOLAB-BIAS (IONOLAB-STEC). Using Symmetric Kullback-Leibler Distance (SKLD), Cross Correlation (CC) coefficient and the metric norm (L2N) to compare IRI-Plas-STEC and IONOLAB-STEC for the month of October 2011 over the Turkish National Permanent GPS Network (TNPGN-Active), it has been observed that SKLD provides a good indicator of disturbance for both earthquakes and geomagnetic storms.Item Open Access Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT(Wiley-Blackwell Publishing, Inc., 2015) Tuna, H.; Arıkan, Orhan; Arikan, F.Three-dimensional imaging of the electron density distribution in the ionosphere is a crucial task for investigating the ionospheric effects. Dual-frequency Global Positioning System (GPS) satellite signals can be used to estimate the slant total electron content (STEC) along the propagation path between a GPS satellite and ground-based receiver station. However, the estimated GPS-STEC is very sparse and highly nonuniformly distributed for obtaining reliable 3-D electron density distributions derived from the measurements alone. Standard tomographic reconstruction techniques are not accurate or reliable enough to represent the full complexity of variable ionosphere. On the other hand, model-based electron density distributions are produced according to the general trends of ionosphere, and these distributions do not agree with measurements, especially for geomagnetically active hours. In this study, a regional 3-D electron density distribution reconstruction method, namely, IONOLAB-CIT, is proposed to assimilate GPS-STEC into physical ionospheric models. The proposed method is based on an iterative optimization framework that tracks the deviations from the ionospheric model in terms of F2 layer critical frequency and maximum ionization height resulting from the comparison of International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model-generated STEC and GPS-STEC. The suggested tomography algorithm is applied successfully for the reconstruction of electron density profiles over Turkey, during quiet and disturbed hours of ionosphere using Turkish National Permanent GPS Network.