Browsing by Author "Toscano, A."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Analytical model of connected bi-omega: robust particle for the selective power transmission through sub-wavelength apertures(IEEE, 2014-04) Ramaccia, D.; Palma, L. D.; Ates, D.; Özbay, Ekmel; Toscano, A.; Bilotti, F.In this paper, we present a new analytical model of the connected bi-omega structure consisting of two bi-omega particles connected together through their arms. A single bi-omega particle consists of a pair of regular equal omegas with mirror symmetry. Assuming the individual bi-omega particle electrically small, the equivalent circuit is derived, in order to predict its resonant frequency. Then, two bi-omega particles are connected together, obtaining a symmetric structure that supports two fundamental modes, with even and odd symmetries, respectively. The proposed analytical model, then, is used to develop a procedure allowing the design of the particle for a desired resonant frequency. The effectiveness of the proposed analytical model and design guidelines is confirmed by proper comparisons to full-wave numerical and experimental results. We also demonstrate through a proper set of experiments that the resonant frequencies of the connected bi-omega particle depend only on the geometrical and electrical parameters of the omegas and are rather insensitive to the practical scenario where the particle itself is actually used, e.g. in free-space, rectangular waveguide or across an aperture in a metallic screen.Item Open Access Design of miniaturized narrowband absorbers based on resonant-magnetic inclusions(IEEE, 2011-06-21) Bilotti, F.; Toscano, A.; Alici, K. B.; Özbay, Ekmel; Vegni, L.In this paper, we present the design of miniaturized narrowband-microwave absorbers based on different kinds of magnetic inclusions. The operation of the proposed components originates from the resonance of a planar array of inclusions excited by an incoming wave with a given polarization. As in common absorber layouts, a 377 Omega resistive sheet is also used to absorb the electromagnetic energy of the impinging field. Since the planar array of magnetic inclusions behaves at its resonance as a perfect magnetic conductor, the resistive sheet is placed in close proximity of the resonating inclusions, without perturbing their resonance condition. In contrast to other typical absorber configurations presented in the literature, the absorber proposed in this paper is not backed by a metallic plate. This feature may be useful for stealth applications, as discussed thoroughly in the paper. The other interesting characteristic of the proposed absorbers is the subwavelength thickness, which has shown to depend only on the geometry of the basic resonant inclusions employed. At first, regular split-ring resonators (SSRs) disposed in an array configuration are considered and some application examples are presented. Absorbers based on SRRs are shown to reach thickness of the order of lambda(0)/20. In order to further squeeze the electrical thickness of the absorbers, multiple SRRs and spiral resonators are also used. The employment of such inclusions leads to the design of extremely thin microwave absorbers, whose thickness may even be close to lambda(0)/100. Finally, some examples of miniaturized absorbers suitable for a practical realization are proposed.Item Open Access Experimental demonstration of the enhanced transmission through circular and rectangular sub-wavelength apertures using omega-like split-ring resonators(Elsevier, 2013-02) Ates, D.; Bilotti, F.; Toscano, A.; Özbay, EkmelEnhanced transmission through circular and rectangular sub-wavelength apertures using omega-shaped split-ring resonator is numerically and experimentally demonstrated at microwave frequencies. We report a more than 150,000-fold enhancement through a deep sub-wavelength aperture drilled in a metallic screen. To the authors’ best knowledge, this is the highest experimentally obtained enhancement factor reported in the literature. In the paper, we address also the origins and the physical reasons behind the enhancement results. Moreover, we report on the differences occurring when using circular, rectangular apertures as well as doublesided and single-sided omega-like split ring resonator structures.Item Open Access Experimental verification of metamaterial loaded small patch antennas(Emerald Group Publishing Limited, 2013) Alici, K. B.; Caliskan, M. D.; Özbay, Ekmel; Bilotti, F.; Toscano, A.; Vegni, L.Purpose - Metamaterial unit cells composed of deep subwavelength resonators brought up new aspects to the antenna miniaturization problem. The paper experimentally demonstrates a metamaterial-inspired miniaturization method for circular patch antennas. In the proposed layouts, the space between the patch and the ground plane is filled with a proper metamaterial composed of either multiple split-ring or spiral resonators (SRs). The authors have manufactured two different patch antennas, achieving an electrical size of ?/3.69 and ?/8.26, respectively. The paper aims to discuss these issues. Design/methodology/ approach - The operation of such a radiative component has been predicted by using a simple theoretical formulation based on the cavity model. The experimental characterization of the antenna has been performed by using a HP8510C vector network analyzer, standard horn antennas, automated rotary stages, coaxial cables with 50 O characteristic impedance and absorbers. Before the characterization measurements we performed a full two-port calibration. Findings - Electrically small circular patch antennas loaded with single layer metamaterials experimentally demonstrated to acceptable figures of merit for applications. The proposed miniaturization technique is potentially promising for antenna applications and the results presented in the paper constitute a relevant proof for the usefulness of the metamaterial concepts in antenna miniaturization problems. Originality/value - Rigorous experimental characterization of several meta material loaded antennas and proof of principle results were provided. Copyright © 2013 Emerald Group Publishing Limited. All rights reserved.Item Open Access Extracting power from sub-wavelength apertures by using electrically small resonators: Phenomenology, modeling, and applications(IEEE, 2012) Bilotti F.; Di Palma L.; Ramaccia, D.; Toscano, A.; Vegni L.; Ateş, Damla; Özbay, EkmelIn this contribution, we review our recent work on the extraction of the electromagnetic power from electrically small apertures by using metamaterial-inspired resonators. First, we present an antenna interpretation of the power transmission through sub-wavelength apertures and discuss the questioned concept of 'enhanced transmission'. Then, we present the so-called 'connected bi-omega particle' and the related analytical model. After that, exploiting proper numerical and experimental examples, we also show that the electromagnetic response of such a particle is not influenced by the surrounding environment. This unique property makes the particle a suitable candidate for the implementation of microwave components based on the selective power extraction from electrically small apertures. Finally, the application of the proposed concepts to the design of innovative microwave components, such as waveguide filters, diplexers, power-splitters, modal filters, horn antennas, etc. will be considered and demonstrated through proper numerical and experimental results. © 2012 IEEE.