Browsing by Author "Tez, M."
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access A combined ULBP2 and SEMA5A expression signature as a prognostic and predictive biomarker for colon cancer(Ivyspring International Publisher, 2017) Demirkol, S.; Gomceli, I.; Isbilen, M.; Dayanc, B. E.; Tez, M.; Bostanci, E. B.; Turhan, N.; Akoglu, M.; Ozyerli, E.; Durdu, S.; Konu, O.; Nissan, A.; Gonen, M.; Gure, A. O.Background: Prognostic biomarkers for cancer have the power to change the course of disease if they add value beyond known prognostic factors, if they can help shape treatment protocols, and if they are reliable. The aim of this study was to identify such biomarkers for colon cancer and to understand the molecular mechanisms leading to prognostic stratifications based on these biomarkers. Methods and Findings: We used an in house R based script (SSAT) for the in silico discovery of stage-independent prognostic biomarkers using two cohorts, GSE17536 and GSE17537, that include 177 and 55 colon cancer patients, respectively. This identified 2 genes, ULBP2 and SEMA5A, which when used jointly, could distinguish patients with distinct prognosis. We validated our findings using a third cohort of 48 patients ex vivo. We find that in all cohorts, a combined ULBP2/SEMA5A classification (SU-GIB) can stratify distinct prognostic sub-groups with hazard ratios that range from 2.4 to 4.5 (p=0.01) when overall- or cancer-specific survival is used as an end-measure, independent of confounding prognostic parameters. In addition, our preliminary analyses suggest SU-GIB is comparable to Oncotype DX colon(®) in predicting recurrence in two different cohorts (HR: 1.5-2; p=0.02). SU-GIB has potential as a companion diagnostic for several drugs including the PI3K/mTOR inhibitor BEZ235, which are suitable for the treatment of patients within the bad prognosis group. We show that tumors from patients with worse prognosis have low EGFR autophosphorylation rates, but high caspase 7 activity, and show upregulation of pro-inflammatory cytokines that relate to a relatively mesenchymal phenotype. Conclusions: We describe two novel genes that can be used to prognosticate colon cancer and suggest approaches by which such tumors can be treated. We also describe molecular characteristics of tumors stratified by the SU-GIB signature.Item Open Access Echinococcus against cancer: why not?(John Wiley & Sons, Inc., 2003) Akgül, H.; Tez, M.; Ünal, A. E.; Keşkek, M.; Sayek, İ.; Özçelik, T.Item Open Access Germ line BRCA1 and BRCA2 gene mutations in Turkish breast cancer patients(Elsevier, 2000-10) Özdag, H.; Tez, M.; Sayek, I.; Müslümanoglu, M.; Tarcan, O.; Içli, F.; Öztürk, M.; Özçelik, T.Germ line BRCA1 and/or BRCA2 mutations were screened in 50 Turkish breast and/or ovarian cancer patients composed of hereditary, familial, early onset and male cancer groups. Genomic DNA samples were tested by heteroduplex analysis and DNA sequencing. Two truncating BRCA2 mutations, one novel (6880 insG) and one previously reported (3034 delAAAC), were found in two out of six (33%) hereditary breast and/or ovarian cancer patients. A novel truncating (1200 insA) and a missense (2080A→G) BRCA1 mutation was found in two of 27 (7%) individuals in the early onset group. A total of four (8%) disease-causing mutations in 50 breast cancer patients were identified in BRCA1 and BRCA2 genes. In addition, five BRCA1 sequence variants have been identified in 23 patients. These results indicate that BRCA1 and BRCA2 genes are involved in some, but not all, forms of hereditary predisposition to breast cancer in the Turkish population.Item Open Access HER2 and proliferation of wound-induced breast carcinoma(The Lancet Publishing, 2003-11-01) Tez, M.; Göçmen, E.; Özçelik, T.Item Open Access Lack of association between RNASEL Arg462Gln variant and the risk of breast cancer(International Institute of Anticancer Research, 2004) Sevinç, A.; Yannoukakos, D.; Konstantopoulou, I.; Manguoglu, E.; Lüleci, G.; Çolak, T.; Akyerli, C.; Çolakoglu, G.; Tez, M.; Sayek, I.; Gerassimos, V.; Nasioulas, G.; Papadopoulou, E.; Florentin, L.; Kontogianni, E.; Bozkurt, B.; Kocabas, N. A.; Karakaya, A. E.; Yulug, I. G.; Özçelik, T.Background: The RNASEL G1385A variant was recently found to be implicated in the development of prostate cancer. Considering the function of RNase L and the pleiotropic effects of mutations associated with cancer, we sought to investigate whether the RNASEL G1385A variant is a risk factor for breast cancer. Patients and Methods: A total of 453 breast cancer patients and 382 age- and sex-matched controls from Greece and Turkey were analyzed. Genotyping for the RNASEL G1385A variant was performed using an Amplification Refractory Mutation System (ARMS). Results: Statistical evaluation of the RNASEL G1385A genotype distribution among breast cancer patients and controls revealed no significant association between the presence of the risk genotype and the occurrence of breast cancer. Conclusion: Although an increasing number of studies report an association between the RNASEL G1385A variant and prostate cancer risk, this variant does not appear to be implicated in the development of breast cancer.Item Open Access MDM2 T309G polymorphism is associated with bladder cancer(International Institute of Anticancer Research, 2006) Onat, O. E.; Tez, M.; Özçelik, T.; Törüner, G. A.Recently, a functional T to G polymorphism at nucleotide 309 in the promoter region of the MDM2 gene (rs: 2279744, SNP 309) has been identified. This polymorphism has an impact on the expression of the MDM2 gene, which is a key negative regulator of the tumor suppressor molecule p53. The effect of T309G polymorphism of the MDM2 gene on bladder cancer susceptibility was investigated in a case-control study of 75 bladder cancer patients and 103 controls from Turkey. The G/G genotype exhibited an increased risk of 2.68 (95% CI, 1.34-5.40) for bladder cancer compared with the combination of low-risk genotypes T/T and T/G at this locus. These results show an association between MDM2 T309G polymorphism and bladder cancer in our study group. To the best of our knowledge, this is the first study reporting that MDM2 T309G polymorphism may be a potential genetic susceptibility factor for bladder cancer.Item Open Access p53 codon 72 polymorphism in bladder cancer-No evidence of association with increased risk or invasiveness(Springer, 2001) Törüner, G. A.; Uçar, A.; Tez, M.; Çetinkaya, M.; Özen, H.; Özçelik, T.We studied the effect of the p53 gene Arg72Pro polymorphism on bladder cancer susceptibility in a case control study of 121 bladder cancer patients and 114 age-sex matched controls to determine whether this polymorphism is a biomarker for the risk and how aggressive the disease is. Genomic DNA was obtained from venous blood samples for genotype determination by PCR and restriction digestion. The genotype frequencies in the patient group were Arg/Arg: 0.3553, Arg/Pro: 0.4711, Pro/Pro: 0.1736, and in the control group Arg/Arg: 0.3684, Arg/Pro: 0.4825, Pro/Pro: 0.1491. The distribution of genotypes between the two groups was not statistically different (χ2 = 0.260, df: 2, P = 0.878). The patient group was subdivided into two groups as superficial bladder cancer (n = 88) and invasive bladder cancer (n = 33), according to the presence of muscle invasion. The distribution of genotypes in the superficial group was Arg/Arg: 0.3409, Arg/Pro: 0.5114, Pro/Pro: 0.1477 and in the invasive group Arg/Arg: 0.3940, Arg/Pro: 0.3636, Pro/Pro: 0.2424. No association was observed with the invasiveness of the tumor (χ2 = 2.542, df: 2, P = 0.281). Stratification of the data by tobacco exposure did not result in a significant difference in genotype frequencies. These data do not support an association between the p53 Arg72Pro polymorphism and bladder cancer.Item Open Access Polymorphisms of glutathione S-transferase genes (GSTM1, GSTP1 and GSTT1) and bladder cancer susceptibility in the Turkish population(Springer, 2001) Törüner, G. A.; Akyerli, C.; Uçar, A.; Aki, T.; Atsu, N.; Özen, H.; Tez, M.; Çetinkaya, M.; Özçelik, T.We investigated the effect of the GSTM1 and GSTT1 null genotypes, and GSTP1 313 A/G polymorphism on bladder cancer susceptibility in a case control study of 121 bladder cancer patients, and 121 age- and sex-matched controls of the Turkish population. The adjusted odds ratio for age, sex, and smoking status is 1.94 [95% confidence intervals (CI) 1.15-3.26] for the GSTM1 null genotype, and 1.75 (95% CI 1.03-2.99) for the GSTP1 313 A/G or G/G genotypes. GSTT1 was shown not to be associated with bladder cancer. Combination of the two high-risk genotypes, GSTM1 null and GSTP1 313 A/G or G/G, revealed that the risk increases to 3.91-fold (95% CI 1.88-8.13) compared with the combination of the low-risk genotypes of these loci. In individuals with the combined risk factors of cigarette smoking and the GSTM1 null genotype, the risk of bladder cancer is 2.81 times (95% CI 1.23-6.35) that of persons who both carry the GSTMl-present genotype and do not smoke. Similarly, the risk is 2.38-fold (95% CI 1.12-4.95) for the combined GSTP1 313 A/G and G/G genotypes and smoking. These findings support the role for the GSTM1 null and the GSTP1 313 AG or GG genotypes in the development of bladder cancer. Furthermore, gene-gene (GSTM1-GSTP1) and gene-environment (GSTMl-smoking, GSTP1-smoking) interactions increase this risk substantially.Item Open Access Reprogramming of replicative senescence in hepatocellular carcinoma-derived cells(National Academy of Sciences, 2006) Ozturk, N.; Erdal, E.; Mumcuoglu, M.; Akcali, K. C.; Yalcin, O.; Senturk, S.; Arslan-Ergul, A.; Gur, B.; Yulug, I.; Cetin Atalay, R.; Yakicier, C.; Yagci, T.; Tez, M.; Ozturk, M.Tumor cells have the capacity to proliferate indefinitely that is qualified as replicative immortality. This ability contrasts with the intrinsic control of the number of cell divisions in human somatic tissues by a mechanism called replicative senescence. Replicative immortality is acquired by inactivation of p53 and p16INK4a genes and reactivation of hTERT gene expression. It is unknown whether the cancer cell replicative immortality is reversible. Here, we show the spontaneous induction of replicative senescence in p53-and p16 INK4a-deficient hepatocellular carcinoma cells. This phenomenon is characterized with hTERT repression, telomere shortening, senescence arrest, and tumor suppression. SIP1 gene (ZFHX1B) is partly responsible for replicative senescence, because short hairpin RNA-mediated SIP1 inactivation released hTERT repression and rescued clonal hepatocellular carcinoma cells from senescence arrest. © 2006 by The National Academy of Sciences of the USA.