BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tecimer, K. A."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Cleaning ground truth data in software task assignment
    (Elsevier BV, 2022-05-25) Tecimer, K. A.; Tüzün, Eray; Moran, Cansu; Erdogmus, H.
    Context: In the context of collaborative software development, there are many application areas of task assignment such as assigning a developer to fix a bug, or assigning a code reviewer to a pull request. Most task assignment techniques in the literature build and evaluate their models based on datasets collected from real projects. The techniques invariably presume that these datasets reliably represent the “ground truth”. In a project dataset used to build an automated task assignment system, the recommended assignee for the task is usually assumed to be the best assignee for that task. However, in practice, the task assignee may not be the best possible task assignee, or even a sufficiently qualified one. Objective: We aim to clean up the ground truth by removing the samples that are potentially problematic or suspect with the assumption that removing such samples would reduce any systematic labeling bias in the dataset and lead to performance improvements. Method: We devised a debiasing method to detect potentially problematic samples in task assignment datasets. We then evaluated the method’s impact on the performance of seven task assignment techniques by comparing the Mean Reciprocal Rank (MRR) scores before and after debiasing. We used two different task assignment applications for this purpose: Code Reviewer Recommendation (CRR) and Bug Assignment (BA). Results: In the CRR application, we achieved an average MRR improvement of 18.17% for the three learning-based techniques tested on two datasets. No significant improvements were observed for the two optimization-based techniques tested on the same datasets. In the BA application, we achieved a similar average MRR improvement of 18.40% for the two learning-based techniques tested on four different datasets. Conclusion: Debiasing the ground truth data by removing suspect samples can help improve the performance of learning-based techniques in software task assignment applications.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback