BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tasci, T. O."

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electrical circuit modeling of surface structures for X-ray photoelectron spectroscopic measurements
    (Elsevier BV * North-Holland, 2008) Tasci, T. O.; Atalar, Ergin; Demirok, U. K.; Süzer, Şefik
    We model the X-ray photoelectron spectrometer and the sample with lumped electrical circuit elements, and simulate various types of conditions using a widely used computer program (PSpice) and compare the results with experimental measurements. By using the electrical model simulations, the surface voltage and the spectrum can be estimated under various types of external voltage stimuli, and the zero potential condition can be predicted accurately for obtaining a truly uncharged spectrum. Additionally, effects of several charging mechanisms (taking place during XPS measurements) on the surface potential could easily be assessed. Finally, the model enables us to find electrical properties, like resistance and capacitance of surface structures, under X-ray and low-energy electron exposure.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Focused RF hyperthermia using magnetic fluids
    (WILEY, 2009-04-27) Tasci, T. O.; Vargel, I.; Arat, A.; Guzel, E.; Korkusuz, P.; Atalar, Ergin
    Heat therapies such as hyperthermia and thermoablation are very promising approaches in the treatment of cancer. Compared with available hyperthermia modalities, magnetic fluid hyperthermia (MFH) yields better results in uniform heating of the deeply situated tumors. In this approach, fluid consisting of superparamagnetic particles (magnetic fluid) is delivered to the tumor. An alternating (ac) magnetic field is then used to heat the particles and the corresponding tumor, thereby ablating it. However, one of the most serious shortcomings of this technique is the unwanted heating of the healthy tissues. This results from the magnetic fluid diffusion from the tumor to the surrounding tissues or from incorrect localization of the fluids in the target tumor area. In this study, the authors demonstrated that by depositing appropriate static (dc) magnetic field gradients on the alternating (ac) magnetic fields, focused heating of the magnetic particles can be achieved. A focused hyperthermia system was implemented by using two types of coils: dc and ac coils. The ac coil generated the alternating magnetic field responsible for the heating of the magnetic particles; the dc coil was used to superimpose a static magnetic field gradient on the alternating magnetic field. In this way, focused heating of the particles was obtained in the regions where the static field was dominated by the alternating magnetic field. In vitro experiments showed that as the magnitude of the dc solenoid currents was increased from 0 to 1.8 A, the specific absorption rate (SAR) of the superparamagnetic particles 2 cm apart from the ac solenoid center decreased by a factor of 4.5, while the SAR of the particles at the center was unchanged. This demonstrates that the hyperthermia system is capable of precisely focusing the heat at the center. Additionally, with this approach, shifting of the heat focus can be achieved by applying different amounts of currents to individual dc solenoids. In vivo experiments were performed with adult rats, where magnetic fluids were injected percutaneously into the tails (with homogeneous fluid distribution inside the tails). Histological examination showed that, as we increased the dc solenoid current from 0.5 to 1.8 A, the total burned volume decreased from 1.6 to 0.2 cm3 verifying the focusing capability of the system. The authors believe that the studies conducted in this work show that MFH can be a much more effective method with better heat localization and focusing abilities.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Measuring local RF heating in MRI: Simulating perfusion in a perfusionless phantom
    (John Wiley & Sons, Inc., 2007) Akca, I. B.; Ferhanoglu, O.; Yeung, C. J.; Guney, S.; Tasci, T. O.; Atalar, Ergin
    Purpose: To overcome conflicting methods of local RF heating measurements by proposing a simple technique for predicting in vivo temperature rise by using a gel phantom experiment. Materials and Methods: In vivo temperature measurements are difficult to conduct reproducibly; fluid phantoms introduce convection, and gel phantom lacks perfusion. In the proposed method the local temperature rise is measured in a gel phantom at a timepoint that the phantom temperature would be equal to the perfused body steady-state temperature value. The idea comes from the fact that the steady-state temperature rise in a perfused body is smaller than the steady-state temperature increase in a perfusionless phantom. Therefore, when measuring the temperature on a phantom there will be the timepoint that corresponds to the perfusion time constant of the body part. Results: The proposed method was tested with several phantom and in vivo experiments. Instead, an overall average of 30.8% error can be given as the amount of underestimation with the proposed method. This error is within the variability of in vivo experiments (45%). Conclusion: With the aid of this reliable temperature rise prediction the amount of power delivered by the scanner can be controlled, enabling safe MRI examinations of patients with implants. © 2007 Wiley-Liss, Inc.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback