Browsing by Author "Susapto, Hepi Hari"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection(TÜBİTAK, 2015) Tunç, İ.; Susapto, Hepi Hari; Güler, Mustafa ÖzgürHere we describe the detailed characterization of gold nanoparticle (Au Np) functionalized surfaces as a biosensing platform by studying a model streptavidin (SA)–biotin interaction. Conjugation of SA on Au Np immobilized on silicon (Si) and quartz surfaces and its interaction with biotin were characterized by X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy, circular dichromism (CD) spectroscopy, and contact angle measurements. The immobilization method and atomic concentrations of Si 2p, Au 4f, S 2p, C 1s, N 1s, and O 1s of the resulting SA–biotin modified Si surface were determined by XPS. The CD spectrum and confocal microscopy imaging confirmed that step-by-step modification and bioconjugation can be monitored successfully. Such detailed and well-defined step-by-step characterization provides good information about the surface properties of biosensor platforms. In addition, the LSPR sensing ability of the Au Np based platforms was studied by using a model SA–biotin system. A 20 nm spectral red shift was detected when 150 nM SA was immobilized on to the Au Nps surface using the direct incubation/binding method on to the dry surface instead of the flow-injection method. The same platforms were also used to detect the CA 125 antibody–antigen system. Large spectral red shifts are very promising in terms of using these surfaces as LSPR biosensorsItem Open Access Peptide nanostructure templated growth of iron phosphate nanostrustures for energy storage applications(2015-12) Susapto, Hepi HariThe use of primary cells has been replaced with rechargeable batteries due to environmental concerns. Li-ion batteries are examples of the rechargeable batteries that have replaced other types of rechargeable batteries from market due to high capacity, high electrochemical potential, superior energy density, durability, as well as the flexibility in design. Compared to other cathode materials used in Li-ion batteries, the iron oxide (FePO4) is less toxic, environmentally friendly, and less expensive. Inorganic materials can be fabricated by template-directed mineralization to enable control over size and morphology. One-Dimensional (1-D) nanostructures can be used for template directed mineralization method. The nanostructures are particularly interesting as electrode materials due to their high surface area, large surface-to-volume ratio, and favorable structural stability. They provide fast ion/electron transfer by sufficient contact between the active materials and electrolyte. In this thesis, 1-D nanostructures of FePO4 materials with high surface area were synthesized to enhance the efficiency of Li-ion batteries. The synthesis of iron phosphate nanostructures was performed by using peptide amphiphile nanostructures. Iron (III) chloride (FeCl3) was used to trigger the self-assembly of the peptide amphiphile molecules forming nanostructures, which can nucleate FePO4 formation. The electrochemical performance of these nanostructures for Li-ion battery was analyzed. In conclusion, the template directed electrode materials revealed fast ion/electron transfer and sufficient contact between materials and electrolyte. They also exhibited enhanced flexibility leading to higher capacity than the electrode material synthesized without the template.