Browsing by Author "Stupp, S. I."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Chromophore amphiphile–polyelectrolyte hybrid hydrogels for photocatalytic hydrogen production(Royal Society of Chemistry, 2020) Sai, H.; Erbaş, Aykut; Dannenhoffer, A.; Huang, D.; Weingarten, A.; Siismets, E.; Jang, K.; Qu, K.; Palmer, L. C.; de la Cruz, M. O.; Stupp, S. I.Hybrid systems based on covalent polymers and supramolecular assemblies offer unique opportunities for functional materials based on the pathway-dependent dynamic structures of supramolecular assemblies and the mechanical stability of covalent polymers. We report here on the synthesis of functional hybrid hydrogels containing self-assembling chromophore amphiphiles and polyelectrolytes. Chromophore amphiphiles were introduced into non-aqueous solvent swollen polymer matrices and self-assembly of the chromophore amphiphiles into crystalline nanostructures was triggered in the confined environment of the covalent network upon solvent exchange for water. Opposite charges in the covalent polyelectrolyte and the chromophore amphiphiles and sterics entrap the supramolecular assemblies within the mechanically stable network. However, molecular components necessary for catalysis, byproducts from photocatalysis, and the hydrogen produced are able to diffuse in or out of the covalent network to create a reusable robust host for photocatalysis. By varying the monomer and crosslinker composition in the feed, we can tune the porosity of the network as well as the chemical environment in which supramolecular crystallization of the chromophore amphiphiles takes place. This allows optimization of the hydrogel mechanical properties, retention of the chromophore amphiphile assemblies, and the photocatalytic reaction efficiency. Coarse-grained molecular dynamics simulations revealed that the chromophore amphiphile assembly is guided by the polyelectrolyte network via ionic interactions. We also demonstrate successful photocatalytic hydrogen production from catalyst-laden hybrid hydrogels with the turnover frequency approaching that of the supramolecular hydrogel system, and also show that the hybrid hydrogels can be reused over multiple cycles as photosensitizers.Item Open Access A hybrid nanofiber matrix to control the survival and maturation of brain neurons(Elsevier BV, 2012) Sur, S.; Pashuck, E. T.; Güler, Mustafa O.; Ito, M.; Stupp, S. I.; Launey, T.Scaffold design plays a crucial role in developing graft-based regenerative strategies, especially when intended to be used in a highly ordered nerve tissue. Here we describe a hybrid matrix approach, which combines the structural properties of collagen (type I) with the epitope-presenting ability of peptide amphiphile (PA) nanofibers. Self-assembly of PA and collagen molecules results in a nanofibrous scaffold with homogeneous fiber diameter of 20-30 nm, where the number of laminin epitopes IKVAV and YIGSR can be varied by changing the PA concentrations over a broad range of 0.125-2 mg/ml. Granule cells (GC) and Purkinje cells (PC), two major neuronal subtypes of cerebellar cortex, demonstrate distinct response to this change of epitope concentration. On IKVAV hybrid constructs, GC density increases three-fold compared with the control collagen substrate at a PA concentration of ≥0.25 mg/ml, while PC density reaches a maximum (five-fold vs. control) at 0.25 mg/ml of PA and rapidly decreases at higher PA concentrations. In addition, adjustment of the epitope number allowed us to achieve fine control over PC dendrite and axon growth. Due to the ability to modulate neuron survival and maturation by easy manipulation of epitope density, our design offers a versatile test bed to study the extracellular matrix (ECM) contribution in neuron development and the design of optimal neuronal scaffold biomaterials. © 2011 Elsevier Ltd.Item Open Access Synergistic regulation of cerebellar Purkinje neuron development by laminin epitopes and collagen on an artificial hybrid matrix construct(Royal Society of Chemistry, 2014) Sur, S.; Güler, Mustafa O.; Webber, M. J.; Pashuck, E. T.; Ito, M.; Stupp, S. I.; Launey, T.The extracellular matrix (ECM) creates a dynamic environment around the cells in the developing central nervous system, providing them with the necessary biochemical and biophysical signals. Although the functions of many ECM molecules in neuronal development have been individually studied in detail, the combinatorial effects of multiple ECM components are not well characterized. Here we demonstrate that the expression of collagen and laminin-1 (lam-1) are spatially and temporally correlated during embryonic and post-natal development of the cerebellum. These changes in ECM distribution correspond to specific stages of Purkinje neuron (PC) migration, somatic monolayer formation and polarization. To clarify the respective roles of these ECM molecules on PC development, we cultured cerebellar neurons on a hybrid matrix comprised of collagen and a synthetic peptide amphiphile nanofiber bearing a potent lam-1 derived bioactive IKVAV peptide epitope. By systematically varying the concentration and ratio of collagen and the laminin epitope in the matrix, we could demonstrate a synergistic relationship between these two ECM components in controlling multiple aspects of PC maturation. An optimal ratio of collagen and IKVAV in the matrix was found to promote maximal PC survival and dendrite growth, while dendrite penetration into the matrix was enhanced by a high IKVAV to collagen ratio. In addition, the laminin epitope was found to guide PC axon development. By combining our observations in vivo and in vitro, we propose a model of PC development where the synergistic effects of collagen and lam-1 play a key role in migration, polarization and morphological maturation of PCs. This journal is © the Partner Organisations 2014.