Browsing by Author "Smith, A."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Atomistic two-, three- and four-body potentials. Spatial and material settings(Elsevier Ltd, 2021-09) Steinmann, P.; Smith, A.; Birang, E.; McBridge, A.; Javili, AliIn molecular dynamics or molecular statics (MD/MS) multi-body potentials empirically capture the energetic interactions in atomistic systems enabling the computation of the corresponding atomistic forces as energetic conjugates to the atomistic positions. We distinguish here between spatial and material atomistic positions and consequently between the corresponding spatial and material atomistic forces. In quasi-statics, i.e. MS, the former, also denoted as deformational atomistic forces, contribute to the classical deformational mechanics (i.e., equilibrium) problem that seeks to minimise the total potential energy of an atomistic system with respect to the atomistic positions relative to the ambient space. The latter, also denoted as configurational atomistic forces, contribute to the configurational mechanics (i.e., non-equilibrium) problem that determines the release of total potential energy of an atomistic system upon variation of the atomistic positions relative to the ambient material, i.e., due to perturbations of the material (initial) atomistic configuration. The importance of material atomistic forces is that they drive energetically favourable re-organisations of the material atomistic configuration, thereby characterising the tendency of generic atomistic defects to propagate. In this contribution we focus on two-, three-, and four-body potentials, whereby we distinguish between novel stretch- and classical angle-based potentials for the two latter cases. Taken together, as the main contribution, we derive expressions for the corresponding spatial and, for the first time, material atomistic forces and highlight their striking formal similarity. The derivations are detailed but the final expression compact and well-suited for numerical implementation.Item Open Access Mechanical characterization of particulated FRP composite pipes: A comprehensive experimental study(Elsevier, 2020-12-04) Saghir, F.; Gohari, S.; Mozafari, Farzin; Moslemi, N.; Burvill, C.; Smith, A.; Lucas, S.Particulated fiber reinforced polymer (FRP) composite pipes encompass unidirectional continuous glass fibers (hoop glass), resin (thermoset polymer vinylester) matrix, chop glass (discontinuous short fibers), and particulate reinforcement (sand) impregnated into resin. They are categorized based on their nominal diameter, pressure class, and stiffness class. Mechanical characteristics of this class of composite materials have not, to date, been comprehensively studied. As such, this paper presents a systematic approach toward comprehensive experimental investigation into their mechanical characterizations in terms of the axial and hoop tensile strengths. The particulated FRP composite pipes used in the current study have glass fibers reinforced along the hoop direction at approximately 89° angle. To assure the experimental data accuracy and reliability, three batches associated with each pipe category were selected which slightly differ in the composition of their constituents. Three specimens per batch were selected and two types of tests were conducted on each specimen. 18 tests (2 × 3 batches × 3 specimens)) were conducted per pipe category (9 tests for hoop and 9 tests for axial). Therefore, 648 tests were conducted in total on 36 pipe categories. Instron 5569A and Instron 8801 universal testing machines were utilized for the axial tensile tests and a split disc hydraulic testing machine for the hoop tensile tests. The mean tensile and the hoop axial stresses and their associated standard deviations were calculated based on the Population Standard Deviation (PSD) equation and then plotted against the material constituents. The results demonstrated that an increase in the composition of particulate reinforcement results in a decrease in the axial and the hoop tensile strengths. However, increasing the ratio of resin, chop glass, and glass fibers contributes to the enhancement of the axial and the hoop tensile strengths. This study provides comprehensive design guidelines for engineers and manufacturing industries.