Browsing by Author "Shen, C."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Generalized global bandit and its application in cellular coverage optimization(Institute of Electrical and Electronics Engineers, 2018) Shen, C.; Zhou, R.; Tekin, Cem; Schaar, M. V. D.Motivated by the engineering problem of cellular coverage optimization, we propose a novel multiarmed bandit model called generalized global bandit. We develop a series of greedy algorithms that have the capability to handle nonmonotonic but decomposable reward functions, multidimensional global parameters, and switching costs. The proposed algorithms are rigorously analyzed under the multiarmed bandit framework, where we show that they achieve bounded regret, and hence, they are guaranteed to converge to the optimal arm in finite time. The algorithms are then applied to the cellular coverage optimization problem to achieve the optimal tradeoff between sufficient small cell coverage and limited macroleakage without prior knowledge of the deployment environment. The performance advantage of the new algorithms over existing bandits solutions is revealed analytically and further confirmed via numerical simulations. The key element behind the performance improvement is a more efficient 'trial and error' mechanism, in which any trial will help improve the knowledge of all candidate power levels.Item Open Access An integrated microfluidic device for the sorting of yeast cells using image processing(Nature Publishing Group, 2018) Yu, B. Y.; Elbüken, Çağlar; Shen, C.; Huissoon, J. P.; Ren, C. L.The process of detection and separation of yeast cells based on their morphological characteristics is critical to the understanding of cell division cycles, which is of vital importance to the understanding of some diseases such as cancer. The traditional process of manual detection is usually tedious and inconsistent. This paper presents a microfluidic device integrated with microvalves for fluid control for the sorting of yeast cells using image processing algorithms and confirmation based on their fluorescent tag. The proposed device is completely automated, low cost and easy to implement in an academic research setting. Design details of the integrated microfluidic system are highlighted in this paper, along with experimental validation. Real time cell sorting was demonstrated with a cell detection rate of 12 cells per minute.Item Open Access A non-atochastic learning approach to energy efficient mobility management(Institute of Electrical and Electronics Engineers Inc., 2016) Shen, C.; Tekin, C.; Van Der Schaar, M.Energy efficient mobility management is an important problem in modern wireless networks with heterogeneous cell sizes and increased nodes densities. We show that optimization-based mobility protocols cannot achieve long-Term optimal energy consumption, particularly for ultra-dense networks (UDNs). To address the complex dynamics of UDN, we propose a non-stochastic online-learning approach, which does not make any assumption on the statistical behavior of the small base station (SBS) activities. In addition, we introduce handover cost to the overall energy consumption, which forces the resulting solution to explicitly minimize frequent handovers. The proposed batched randomization with exponential weighting (BREW) algorithm relies on batching to explore in bulk, and hence reduces unnecessary handovers. We prove that the regret of BREW is sublinear in time, thus guaranteeing its convergence to the optimal SBS selection. We further study the robustness of the BREW algorithm to delayed or missing feedback. Moreover, we study the setting where SBSs can be dynamically turned ON and OFF. We prove that sublinear regret is impossible with respect to arbitrary SBS ON/OFF, and then develop a novel learning strategy, called ranking expert (RE), that simultaneously takes into account the handover cost and the availability of SBS. To address the high complexity of RE, we propose a contextual ranking expert (CRE) algorithm that only assigns experts in a given context. Rigorous regret bounds are proved for both RE and CRE with respect to the best expert. Simulations show that not only do the proposed mobility algorithms greatly reduce the system energy consumption, but they are also robust to various dynamics which are common in practical ultra-dense wireless networks.