BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sharma, M."

Filter results by typing the first few letters
Now showing 1 - 10 of 10
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Blue-emitting CdSe nanoplatelets enabled by sulfur-alloyed heterostructures for light-emitting diodes with low turn-on voltage
    (American Chemical Society, 2021-12-28) İzmir, M.; Sharma, A.; Shendre, S.; Durmuşoğlu, E. G.; Sharma, V. K.; Shabani, Farzan; Baruj, Hamed Dehghanpour; Delikanlı, Savaş; Sharma, M.; Demir, Hilmi Volkan
    Colloidal nanoplatelets (NPLs) have emerged as the last class of semiconductor nanocrystals for their potential optoelectronic applications. The heterostructures of these nanocrystals can achieve high photoluminescence quantum yield and enhanced photostability, along with color purity. Such advantages make them a promising candidate for solution-processable light-emitting diodes (LEDs). However, to date, blue-emitting CdSe nanoplatelets (NPLs) exhibit poor photoluminescence quantum yield and also typically suffer from a rolled-up morphology. To mitigate these problems in this work, we propose and demonstrate efficient alloyed 4 ML CdSe1–xSx nanoplatelets having a CdS crown with enhanced photoluminescence quantum yields (up to 60%) in the blue region (462–487 nm). We successfully used these NPLs as an electrically driven active emitter in the blue-emitting NPL-LEDs with a low turn-on voltage of ∼4 V. The Commission Internationale de L’Eclairage (CIE) coordinates of (0.23, 0.14) were obtained for these blue-emitting NPL-LEDs. These emitters could potentially open up the opportunity for full-color displays using these NPL-based blue LEDs in conjunction with the red and green ones.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Colloidal semiconductor quantum well supraparticles as low-threshold and photostable microlasers
    (Wiley-VCH Verlag GmbH & Co. KGaA, 2025-01-08) Alves, P. U.; Quinn, G.; Strain, M. J.; Durmuşoğlu, E. G.; Sharma, M.; Demir, Hilmi Volkan; Edwards, P. R.; Martin, R. W.; Dawson, M. D.; Laurand, N.
    This study introduces and compares the lasing performance of micron-sized and sphere-shaped supraparticle (SP) lasers fabricated through bottom-upassembly of II-VI semiconductor colloidal quantum wells (CQWs) with their counterparts made of quantum dots (CQDs). CQWs consist of a 4-monolayers thick CdSe core and an 8-monolayers thick $Cd_xZn_{1-x}S$ shell with a nominal size of 14 × 15 × 4.2 nm, and CQDs of $CdS_xSe_{1-x}/ZnS$with 6 nm diameter. SPs areoptically characterized with a 0.76 ns pulse laser (spot size: 2.88 × 10$^{−7}$ cm$^2$ )at 532 nm, and emit in the 620–670 nm spectral range. Results show thatCQW SPs have lasing thresholds twice as low (0.1–0.3 nJ) as CQD SPs(0.3–0.6 nJ), and stress tests using a constant 0.6 nJ optical pump energy demonstrate that CQW SPs withstand lasing emission for longer than CQDSPs. Lasing emission in CQW and CQD SPs under continuous operation yields half-lives of $𝝉_{CQW SP}$ ≈150 min and $𝝉_{CQD SP}$ ≈22 min, respectively. The half-life of CQW SPs is further extended to $𝝉_{QW}$ ≈385 min when optically pumped at 0.5 nJ. Such results compare favorably to those in the literature and highlight the performance of CdSe-based CQW SPs for laser applications.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Facile route to produce spherical and highly luminescent Tb3+doped Y2O3 nanophosphors
    (Elsevier, 2017) Kumar, D.; Sharma, M.; Haranath, D.; Pandey, O. P.
    Terbium doped yttrium oxide (Y2O3:Tb3+) nanophosphor has been synthesized via a facial yet modified co-precipitation method. To get maximum luminescence output from Y2O3:Tb3+nanophosphors, surfactants namely, Cetyl trimethylammonium bromide (CTAB) and Trioctylphosphine oxide (TOPO) were added during synthesis. Further, it has been observed that combined addition of surfactant (CTAB�+�TOPO) at the time of synthesis has resulted in nearly spherical morphology of the nanophosphor. Furthermore, these optimized material are observed to have enhanced integrated photoluminescence (PL) intensity of ∼23% as compared to the one synthesized without the addition of any surfactant. The results are further supported by detailed structural and optical studies. Optimum use of surfactants during synthesis shows for the first time that both nano-sized distribution and high crystallinity can be achieved simultaneously which has resulted in bright green emission in Tb3+doped Y2O3nanophosphors.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fast and quick degradation properties of doped and capped ZnO nanoparticles under UV-Visible light radiations
    (Elsevier Ltd, 2016) Mittal, M.; Sharma, M.; Pandey, O. P.
    Undoped and Manganese (Mn) doped zinc oxide (ZnO) (Zn1- xMnxO, x=0.005, 0.01, 0.015 and 0.02) nanoparticles (NPs) capped with (1.0%) Thioglycerol (TG) has been successfully synthesized by co-precipitation method. Optical and morphological studies have been done for photophysical and structural analysis of synthesized materials. The photocatalytic activity of undoped and Mn doped ZnO NPs were investigated by degradation of crystal violet (CV) dye under UV-Visible light radiations. It has been found that Mn (1.0%) doping concentration is optimal for photophysical and photocatalytic properties. When the pH of as synthesized optimum doped ZnO NPs varied from natural pH i.e. from 6.7 to 8.0 and 10.0, the degradation of CV dye increases from 92% to 95% and 98% in 180min respectively. Further on increasing the pH of optimum doped synthesized NPs to 12.0, almost 100% degradation has been achieved in 150min. Optimum doped photocatalyst synthesized at pH-12.0 has also effectively degraded the CV dye solution in acidic and basic medium thus showed its utility in various industries. However, it has been found that 100% of CV dye quickly degraded in 30min when only 1.0% of hydrogen peroxide (H2O2) was introduced along with optimized NPs synthesized at pH-12. Kinetic studies show that the degradation of CV dye follows pseudo first and second-order kinetic law. Further an industrial anionic polyazo Sirius red F3B (SRF3B) dye has been degraded to 100% with optimized NPs synthesized at pH-12.0 in 15min only.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Low-threshold lasing from copper-doped CdSe colloidal quantum wells
    (Wiley, 2021-05-04) Yu, J.; Sharma, M.; Li, M.; Delikanlı, Savaş; Sharma, A.; Taimoor, M.; Altintas, Y.; McBride, J. R.; Kusserow, T.; Sum, T.; Demir, Hilmi Volkan
    Transition metal doped colloidal nanomaterials (TMDCNMs) have recently attracted attention as promising nano-emitters due to dopant-induced properties. However, despite ample investigations on the steady-state and dynamic spectroscopy of TMDCNMs, experimental understandings of their performance in stimulated emission regimes are still elusive. Here, the optical gain properties of copper-doped CdSe colloidal quantum wells (CQWs) are systemically studied with a wide range of dopant concentration for the first time. This work demonstrates that the amplified spontaneous emission (ASE) threshold in copper-doped CQWs is a competing result between the biexciton formation, which is preferred to achieve population inversion, and the hole trapping which stymies the population inversion. An optimum amount of copper dopants enables the lowest ASE threshold of ≈7 µJ cm−2, about 8-fold reduction from that in undoped CQWs (≈58 µJ cm−2) under sub-nanosecond pulse excitation. Finally, a copper-doped CQW film embedded in a vertical cavity surface-emitting laser (VCSEL) structure yields an ultralow lasing threshold of 4.1 µJ cm−2. Exploiting optical gain from TMDCNMs may help to further boost the performance of colloidal-based lasers.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators
    (Wiley-VCH Verlag, 2017) Sharma, M.; Gungor K.; Yeltik A.; Olutas M.; Guzelturk, B.; Kelestemur Y.; Erdem, T.; Delikanli S.; McBride, J. R.; Demir, Hilmi Volkan
    Doping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum. However, existing doped CQDs that are aimed for full solar spectrum LSCs suffer from moderately low quantum efficiency, intrinsically small absorption cross-section, and gradually increasing absorption profiles coinciding with the emission spectrum, which together fundamentally limit their effective usage. Here, the authors show the first account of copper doping into atomically flat colloidal quantum wells (CQWs). In addition to Stokes-shifted and tunable dopant-induced photoluminescence emission, the copper doping into CQWs enables near-unity quantum efficiencies (up to ≈97%), accompanied by substantially high absorption cross-section and inherently step-like absorption profile, compared to those of the doped CQDs. Based on these exceptional properties, the authors have demonstrated by both experimental analysis and numerical modeling that these newly synthesized doped CQWs are excellent candidates for LSCs. These findings may open new directions for deployment of doped CQWs in LSCs for advanced solar light harvesting technologies.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Spectrally resolved nonlinear optical properties of doped versus undoped quasi-2D semiconductor nanocrystals: copper and silver doping provokes strong nonlinearity in colloidal CdSe nanoplatelets
    (American Chemical Society, 2022-01-04) Nawrot, K. C.; Sharma, M.; Cichy, B.; Sharma, A.; Delikanli, Savas; Samoć, M.; Demir, Hilmi Volkan; Nyk, M.
    Nonlinear optical processes are crucial for emerging applications including multiphoton-excited fluorescence microscopy and optical power limiting. Therefore, searching for materials of high multiphoton absorption cross sections is essential for the development of these techniques. We present synthesis of 4.5 monolayer CdSe nanoplatelets (NPLs) doped with silver and copper ions along with the evaluation of their two-photon absorption (TPA) and three-photon absorption (3PA) cross sections. Doping significantly increases the TPA cross section of each NPL sample, which reaches up to 1.33 × 107 GM for the most absorbing copper-doped ones. We also detected 1–2 orders of magnitude-enhanced 3PA cross sections for the doped NPLs in comparison with their undoped counterparts. As TPA and 3PA peaks appear, in the first and the second biological transmission windows, respectively, doped NPLs are promising candidates for multiphoton fluorescence microscopy as bioimaging agents. Moreover, the strong nonlinear response suggests application as active optoelectronic materials in optical sensors.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Synthesis of fluorescent core-shell nanomaterials and strategies to generate white light
    (American Institute of Physics Inc., 2015) Singh, A.; Kaur, R.; Pandey, O. P.; Wei, X.; Sharma, M.
    In this work, cadmium free core-shell ZnS:X/ZnS (X-=-Mn, Cu) nanoparticles have been synthesized and used for white light generation. First, the doping concentration of Manganese (Mn) was varied from 1% to 4% to optimize the dopant related emission and its optimal value was found to be 1%. Then, ZnS shell was grown over ZnS:Mn(1%) core to passivate the surface defects. Similarly, the optimal concentration of Copper (Cu) was found to be 0.8% in the range varied from 0.6% to 1.2%. In order to obtain an emission in the whole visible spectrum, dual doping of Mn and Cu was done in the core and the shell, respectively. A solid-solid mixing in different ratios of separately doped quantum dots (QDs) emitting in the blue green and the orange region was performed. Results show that the optimum mixture of QDs excited at 300-nm gives Commission Internationale del'Éclairage color coordinates of (0.35, 0.36), high color rendering index of 88, and correlated color temperature of 4704-K with minimum self-absorption. © 2015 AIP Publishing LLC.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ultrafast control of the optical transition in type-II colloidal quantum wells
    (American Chemical Society, 2023-04-21) Yu, J.; Durmusoglu, E. G.; Wang, Y.; Sharma, M.; Demir, Hilmi Volkan; Dang, C.
    Manipulating the optical transition in semiconductors at ultrashort timescales is of both fundamental interest and central importance for emerging photonic applications. Traditionally, this manipulation is realized by electrostatic gating via Stark effects or band-gap renormalizations. Here, we report an ultrafast and all-optical route to engineer an indirect transition in core–crown colloidal quantum wells (CQWs), namely, CdSe/CdTe, with a type-II band alignment. Following the intense laser pulse excitation, the indirect band transition energy exhibits a pronounced blueshift–redshift crossover on the picosecond timescale, stemming from the formation and dissipation of the transient electric field (E-field) that forms upon photoexcitation to compensate for the driving force provided by the band offsets. Both the energy shift and dynamics of the transient E-field can be modulated optically by tuning the laser pulse excitation fluence. Our finding demonstrates a strong analogy between the type-II heterojunction and a p–n junction with respect to carrier equilibrium processes, which holds promise to facilitate the integration of CQWs within optical switching networks.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Understanding the suitable alloying conditions for highly efficient Cu- and Mn-doped Zn1-xCdxS/ZnS core-shell quantum dots
    (Elsevier B.V., 2023-10-20) Kaur, Manpreet; Sharma, Ashma; Erdem, Onur; Kumar, A.; Demir, Hilmi Volkan; Sharma, M.
    Doping of alloyed colloidal quantum dots (QDs) has garnered significant attention for providing tunable and Stokes-shifted emission. By alloying the host semiconductor nanocrystals (NCs), their band gap can be tuned. With the specific addition of dopant ions, these NCs can emit tunable emissions within the visible spectrum. However, while doped and alloyed quantum dots (QDs) have shown promise for tunable emissions, their emission qualities have not been consistent across the spectrum. Here, we report the synthesis of high-quality Cu- and Mn-doped ZnxCd1-xS (x = 0–1) alloyed QDs by a colloidal non-injection method. In this study, we examined the effect of different dopant ions on the optical properties of similar alloyed nanocrystals. The deposition of a ZnS shell on these doped QDs significantly improves their quantum yield (QY), increasing it from 7.0 % to 50.0 % for Cu-doped QDs and from 30.0 % to 80.0 % for Mn-doped QDs. The Cu-doped QDs exhibit tunable emission from green to red across the visible spectrum by varying the Zn/Cd ratio, whereas the Mn-doped QDs show a fixed orange emission. Interestingly, the Cu-doped alloyed QDs show a contrasting trend in quantum yield (QY) compared to those of Mn-doped QDs when the amount of Cd in ZnCdS alloyed QDs is systematically changed. As the amount of Cd increases in the ZnCdS alloyed QDs, the Cu-doped QDs show both an increase in average lifetime and an increase in QY. In contrast, for the Mn-doped QDs, the decay lifetime values remain fairly constant for different amounts of Cd in the ZnCdS alloyed QDs, but the QY decreases as the amount of Cd increases. The results of this study may facilitate the design of optimal alloying combinations for Cu/Mn-doped QDs in optoelectronic applications. © 2023 The Authors

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback