Browsing by Author "Rudloff, B."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Algorithms to solve unbounded convex vector optimization problems(Society for Industrial and Applied Mathematics Publications, 2023-10-12) Wagner, A.; Ulus, Firdevs; Rudloff, B.; Kováčová, G.; Hey, N.This paper is concerned with solution algorithms for general convex vector optimization problems (CVOPs). So far, solution concepts and approximation algorithms for solving CVOPs exist only for bounded problems [\c C. Ararat, F. Ulus, and M. Umer, J. Optim. Theory Appl., 194 (2022), pp. 681-712], [D. Dörfler, A. Löhne, C. Schneider, and B. Weißing, Optim. Methods Softw., 37 (2022), pp. 1006-1026], [A. Löhne, B. Rudloff, and F. Ulus, J. Global Optim., 60 (2014), pp. 713-736]. They provide a polyhedral inner and outer approximation of the upper image that have a Hausdorff distance of at most ε. However, it is well known (see [F. Ulus, J. Global Optim., 72 (2018), pp. 731-742]), that for some unbounded problems such polyhedral approximations do not exist. In this paper, we will propose a generalized solution concept, called an (ε,δ)-solution, that allows one to also consider unbounded CVOPs. It is based on additionally bounding the recession cones of the inner and outer polyhedral approximations of the upper image in a meaningful way. An algorithm is proposed that computes such δ-outer and δ-inner approximations of the recession cone of the upper image. In combination with the results of [A. Löhne, B. Rudloff, and F. Ulus, J. Global Optim., 60 (2014), pp. 713-736] this provides a primal and a dual algorithm that allow one to compute (ε,δ)-solutions of (potentially unbounded) CVOPs. Numerical examples are provided.Item Open Access Certainty equivalent and utility indifference pricing for incomplete preferences via convex vector optimization(Springer Science and Business Media Deutschland GmbH, 2020) Rudloff, B.; Ulus, FirdevsFor incomplete preference relations that are represented by multiple priors and/or multiple—possibly multivariate—utility functions, we define a certainty equivalent as well as the utility indifference price bounds as set-valued functions of the claim. Furthermore, we motivate and introduce the notion of a weak and a strong certainty equivalent. We will show that our definitions contain as special cases some definitions found in the literature so far on complete or special incomplete preferences. We prove monotonicity and convexity properties of utility buy and sell prices that hold in total analogy to the properties of the scalar indifference prices for complete preferences. We show how the (weak and strong) set-valued certainty equivalent as well as the indifference price bounds can be computed or approximated by solving convex vector optimization problems. Numerical examples and their economic interpretations are given for the univariate as well as for the multivariate case.Item Open Access Dual representations for systemic risk measures(Springer, 2020) Ararat, Çağın; Rudloff, B.The financial crisis showed the importance of measuring, allocating and regulating systemic risk. Recently, the systemic risk measures that can be decomposed into an aggregation function and a scalar measure of risk, received a lot of attention. In this framework, capital allocations are added after aggregation and can represent bailout costs. More recently, a framework has been introduced, where institutions are supplied with capital allocations before aggregation. This yields an interpretation that is particularly useful for regulatory purposes. In each framework, the set of all feasible capital allocations leads to a multivariate risk measure. In this paper, we present dual representations for scalar systemic risk measures as well as for the corresponding multivariate risk measures concerning capital allocations. Our results cover both frameworks: aggregating after allocating and allocating after aggregation. As examples, we consider the aggregation mechanisms of the Eisenberg–Noe model as well as those of the resource allocation and network flow models.Item Open Access A parametric simplex algorithm for linear vector optimization problems(Springer, 2017) Rudloff, B.; Ulus, F.; Vanderbei, R.In this paper, a parametric simplex algorithm for solving linear vector optimization problems (LVOPs) is presented. This algorithm can be seen as a variant of the multi-objective simplex (the Evans–Steuer) algorithm (Math Program 5(1):54–72, 1973). Different from it, the proposed algorithm works in the parameter space and does not aim to find the set of all efficient solutions. Instead, it finds a solution in the sense of Löhne (Vector optimization with infimum and supremum. Springer, Berlin, 2011), that is, it finds a subset of efficient solutions that allows to generate the whole efficient frontier. In that sense, it can also be seen as a generalization of the parametric self-dual simplex algorithm, which originally is designed for solving single objective linear optimization problems, and is modified to solve two objective bounded LVOPs with the positive orthant as the ordering cone in Ruszczyński and Vanderbei (Econometrica 71(4):1287–1297, 2003). The algorithm proposed here works for any dimension, any solid pointed polyhedral ordering cone C and for bounded as well as unbounded problems. Numerical results are provided to compare the proposed algorithm with an objective space based LVOP algorithm [Benson’s algorithm in Hamel et al. (J Global Optim 59(4):811–836, 2014)], that also provides a solution in the sense of Löhne (2011), and with the Evans–Steuer algorithm (1973). The results show that for non-degenerate problems the proposed algorithm outperforms Benson’s algorithm and is on par with the Evans–Steuer algorithm. For highly degenerate problems Benson’s algorithm (Hamel et al. 2014) outperforms the simplex-type algorithms; however, the parametric simplex algorithm is for these problems computationally much more efficient than the Evans–Steuer algorithm. © 2016, Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society.Item Open Access Set-valued shortfall and divergence risk measures(World Scientific Publishing, 2017) Ararat, C.; Hamel, A. H.; Rudloff, B.Risk measures for multivariate financial positions are studied in a utility-based framework. Under a certain incomplete preference relation, shortfall and divergence risk measures are defined as the optimal values of specific set minimization problems. The dual relationship between these two classes of multivariate risk measures is constructed via a recent Lagrange duality for set optimization. In particular, it is shown that a shortfall risk measure can be written as an intersection over a family of divergence risk measures indexed by a scalarization parameter. Examples include set-valued versions of the entropic risk measure and the average value at risk. As a second step, the minimization of these risk measures subject to trading opportunities is studied in a general convex market in discrete time. The optimal value of the minimization problem, called the market risk measure, is also a set-valued risk measure. A dual representation for the market risk measure that decomposes the effects of the original risk measure and the frictions of the market is proved.