Browsing by Author "Renklioglu, B."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Heat transfer through dipolar coupling: Sympathetic cooling without contact(American Physical Society, 2016) Renklioglu, B.; Tanatar, Bilal; Oktel, M. Ö.We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and calculate the heat transfer between them. The effective interactions describing screening and correlation effects between the dipoles in a single layer are modeled within the Euler-Lagrange Fermi-hypernetted-chain approximation. The random-phase approximation is used for the interactions across the layers. We investigate the amount of transferred power between the layers as a function of the temperature difference. Energy transfer arises due to the long-range dipole-dipole interactions. A simple thermal model is established to investigate the feasibility of using the contactless sympathetic cooling of the ultracold polar atoms and molecules. Our calculations indicate that dipolar heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling process.Item Open Access Non-equilibrium phase transitions in the two-temperature Ising model with Kawasaki dynamics(Springer-Verlag, 2012-12) Renklioglu, B.; Yalabik, M. C.Phase transitions of the two-finite temperature Ising model on a square lattice are investigated by using a position space renormalization group (PSRG) transformation. Different finite temperatures, T-x and T-y, and also different time-scale constants, alpha(x) and alpha(y) for spin exchanges in the x and y directions define the dynamics of the non-equilibrium system. The critical surface of the system is determined by RG flows as a function of these exchange parameters. The Onsager critical point (when the two temperatures are equal) and the critical temperature for the limit when the other temperature is infinite, previously studied by the Monte Carlo method, are obtained. In addition, two steady-state fixed points which correspond to the non-equilibrium phase transition are presented. These fixed points yield the different universality class properties of the non-equilibrium phase transitions.