Browsing by Author "Pearson, T.C."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Cepstrum based feature extraction method for fungus detection(SPIE, 2011) Yorulmaz, Onur; Pearson, T.C.; Çetin, A. EnisIn this paper, a method for detection of popcorn kernels infected by a fungus is developed using image processing. The method is based on two dimensional (2D) mel and Mellin-cepstrum computation from popcorn kernel images. Cepstral features that were extracted from popcorn images are classified using Support Vector Machines (SVM). Experimental results show that high recognition rates of up to 93.93% can be achieved for both damaged and healthy popcorn kernels using 2D mel-cepstrum. The success rate for healthy popcorn kernels was found to be 97.41% and the recognition rate for damaged kernels was found to be 89.43%. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).Item Open Access Separating nut-shell pieces from hazelnuts and pistachio kernels using impact vibration analysis(IEEE, 2013) Habiboǧlu, Yusuf Hakan; Sevimli, Rasim Akın; Çetin, A. Enis; Pearson, T.C.In this article nut-shell pieces are separated from pistachio kernels and hazelnut kernels using impact vibration analysis. Vibration signals are recorded and analyzed in real-time. Mel-kepstral feature parameters and line spectral frequency values are extracted from the vibration signals. Feature parameters are classified using a Support Vector Machine (SVM) which was trained a priori using a manually classified data set. An average classification rate of 96:3% and 98:3%was achieved with Antepstyle Turkish pistachio nuts and hazelnuts. An important feature of the method is that it is easily trainable for other kinds of pistachio nuts and other nuts including walnuts. © 2013 IEEE.