Browsing by Author "Ozdemir, M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access The design and fabrication of supramolecular semiconductor nanowires formed by benzothienobenzothiophene (BTBT)-conjugated peptides(Royal Society of Chemistry, 2018) Khalily, M. A.; Usta, H.; Ozdemir, M.; Bakan, G.; Dikecoglu, F. B.; Edwards-Gayle, C.; Hutchinson, J. A.; Hamley, I. W.; Dana, A.; Güler, Mustafa O.π-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT π-core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C3-COHN-Ahx-VVAGKK-Am) and the C8-BTBT-peptide (C8-BTBT-C3-COHN-Ahx-VVAGKK-Am), as β-sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(±1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type π-π interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 × 10-6 S cm-1. The BTBT π-core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.Item Open Access High transparent, low surface resistance ZTO/Ag/ZTO multilayer thin film electrodes on glass and polymer substrates(Elsevier, 2021-02-02) Ekmekcioglu, M.; Erdogan, N.; Astarlıoğlu, Aziz Taner; Yigen, S.; Aygun, G.; Ozyuzer, L.; Ozdemir, M.Zinc tin oxide (ZTO)/Ag/ZTO multilayer thin films were grown by direct current (DC) magnetron sputtering technique at room temperature on soda lime glass (SLG) and different polymer substrates such as polycarbonate (PC) and polyethylene terephthalate (PET) for transparent conductive electrode (TCE) applications. The effect of substrate on the structural, optical and electrical characteristics of ZTO/Ag/ZTO multilayers was investigated. All prepared ZTO/Ag/ZTO films presented amorphous structure as expected from room temperature deposition process and smooth surface quality with very low surface roughness. We found that ZTO/Ag/ZTO multilayer films grown on SLG, PET and PC substrates have very high optical transmission and low surface resistance. Moreover, after ZTO/Ag/ZTO multilayer thin film deposition on polymer substrates, the optical transmission was found to be enhanced because the higher absorption due to Ag layer is compensated by lower reflectance. Our results suggest that ZTO/Ag/ZTO multilayer thin films on any substrate can be a promising alternative to indium tin oxide (ITO) films as a cost-effective, indium-free, flexible and transparent electrode for various applications.