Browsing by Author "Ozdemir, A."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Amphiphilic peptide coated superparamagnetic iron oxide nanoparticles for in vivo MR tumor imaging(Royal Society of Chemistry, 2016) Ozdemir, A.; Ekiz, M. S.; Dilli, A.; Güler, Mustafa O.; Tekinay, A. B.Magnetic resonance imaging (MRI) is a noninvasive imaging technique that provides high spatial resolution and depth with pronounced soft-tissue contrast for in vivo imaging. A broad variety of strategies have been employed to enhance the diagnostic value of MRI and detect tissue abnormalities at an earlier stage. Superparamagnetic iron oxide nanoparticles (SPIONs) are considered to be suitable candidates for effective imaging due to their small size, versatile functionality and better biocompatibility. Here, we demonstrate that coating SPIONs with proline-rich amphiphilic peptide molecules through noncovalent interactions leads to a water-dispersed hybrid system suitable as an MRI contrast agent. Cellular viability and uptake of amphiphilic peptide coated SPIONs (SPION/K-PA) were evaluated with human vascular endothelial cells (HUVEC) and estrogen receptor (ER) positive human breast adenocarcinoma (MCF-7) cells. The efficiency of SPION/K-PA as MRI contrast agents was analyzed in Sprague-Dawley rats with mammary gland tumors. MR imaging showed that SPION/K-PA effectively accumulated in tumor tissues, enhancing their imaging potential. Although nanoparticles were observed in reticuloendothelial system organs (RES) and especially in the liver and kidney immediately after administration, the MR signal intensity in these organs diminished after 1 h and nanoparticles were subsequently cleared from these organs within two weeks. Histological observations also validated the accumulation of nanoparticles in tumor tissue at 4 h and their bioelimination from the organs of both healthy and tumor-bearing rats after two weeks.Item Open Access Comparative serum albumin interactions and antitumor effects of Au(III) and Ga(III) ions(Urban und Fischer Verlag GmbH und Co. KG, 2015) Sarioglu O.F.; Ozdemir, A.; Karaboduk, K.; Tekinay, T.In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV-vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal-HSA interactions; while the binding affinity (Ka) of Au(III)-HSA binding was around 3.87×105M-1, it was around 9.68×103M-1 for Ga(III)-HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions. © 2014 Elsevier GmbH.Item Open Access Comparison of Au(III) and Ga(III) ions' binding to calf thymus DNA: Spectroscopic characterization and thermal analysis(Humana Press Inc., 2014) Sarioglu O.F.; Tekiner-Gursacli, R.; Ozdemir, A.; Tekinay, T.Metals have been studied as potential chemotherapeutic agents for cancer therapies due to their high reactivity toward a wide variety of substances. The characterization of metal ion-binding capacities is essential to understand the possible effects of metals on target biomolecules. In the present study, biochemical effects of Au(III) and Ga(III) ions on calf thymus DNA (ctDNA) were studied comparatively via bioanalytical, spectroscopic, and thermal methods. Briefly, UV-Vis absorbance spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy were utilized for spectroscopic characterization, and isothermal titration calorimetry (ITC) measurements were performed for thermal analysis. Our results reveal that both Au(III) and Ga(III) ions are capable of interacting with ctDNA, and Au(III) ions display a more favorable interaction and a higher binding affinity. ITC analyses indicate that the Au(III)-DNA interaction displays a binding affinity (Ka) around 1.43×106 M -1, while a Ka around 1.17×105 M -1 was observed for the Ga(III)-DNA binding. It was suggested that both metal ions are unlikely to change the structural B-conformation while interacting with ctDNA. © 2014 Springer Science+Business Media.Item Open Access Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels(Royal Society of Chemistry, 2017) Cinar, G.; Ozdemir, A.; Hamsici, S.; Gunay, G.; Dana, A.; Tekinay, A. B.; Güler, Mustafa O.Peptide amphiphiles (PAs) self-assemble into supramolecular nanofiber gels that provide a suitable environment for encapsulation of both hydrophobic and hydrophilic molecules. The PA gels have significant advantages for controlled delivery applications due to their high capacity to retain water, biocompatibility, and biodegradability. In this study, we demonstrate injectable supramolecular PA nanofiber gels for drug delivery applications. Doxorubicin (Dox), as a widely used chemotherapeutic drug for breast cancer treatment, was encapsulated within the PA gels prepared at different concentrations. Physical and chemical properties of the gels were characterized, and slow release of the Dox molecules through the supramolecular PA nanofiber gels was studied. In addition, the diffusion constants of the drug molecules within the PA nanofiber gels were estimated using fluorescence recovery after the photobleaching (FRAP) method. The PA nanofiber gels did not show any cytotoxicity and the encapsulation strategy enhanced the activity of drug molecules on cellular viability through prolonged release compared to direct administration under in vitro conditions. Moreover, the local in vivo injection of the Dox encapsulated PA nanofiber gels (Dox/PA) to the tumor site demonstrated the lowest tumor growth rate compared to the direct Dox injection and increased the apoptotic cells within the tumor tissue for local drug release through the PA nanofiber gels under in vivo conditions.Item Open Access Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA(Springer, 2014) Ozdemir, A.; Gursacli, R. T.; Tekinay, T.The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV-Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid-DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54x104 M -1. FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations. © 2014 Springer Science+Business Media.Item Open Access Spectroscopic evaluation of DNA–borate Interactions(Humana Press Inc., 2015) Ozdemir, A.; Sarioglu O. F.; Tekinay, T.We describe the binding characteristics of two natural borates (colemanite and ulexite) to calf thymus DNA by UV–vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and a competitive DNA binding assay. Our results suggest that colemanite and ulexite interact with calf thymus DNA under a non-intercalative mode of binding and do not alter the secondary structure of the DNA helix. The FT-IR spectroscopy results indicate that the two borates might interact with DNA through sugar-phosphate backbone binding. © 2015, Springer Science+Business Media New York.