Browsing by Author "Orban, G. A."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A large video set of natural human actions for visual and cognitive neuroscience studies and its validation with fMRI(MDPI, 2022-12-29) Ürgen, Burcu Ayşen; Nizamoğlu, Hilal; Eroğlu, Aslı; Orban, G. A.The investigation of the perception of others’ actions and underlying neural mechanisms has been hampered by the lack of a comprehensive stimulus set covering the human behavioral repertoire. To fill this void, we present a video set showing 100 human actions recorded in natural settings, covering the human repertoire except for emotion-driven (e.g., sexual) actions and those involving implements (e.g., tools). We validated the set using fMRI and showed that observation of the 100 actions activated the well-established action observation network. We also quantified the videos’ low-level visual features (luminance, optic flow, and edges). Thus, this comprehensive video set is a valuable resource for perceptual and neuronal studies.Item Open Access A parietal region processing numerosity of observed actions: An FMRI study(Wiley, 2020-07) Sawamura, H.; Ürgen, Burcu A.; Corbo, D.; Orban, G. A.When observing others' behavior, it is important to perceive not only the identity of the observed actions (OAs), but also the number of times they were performed. Given the mounting evidence implicating posterior parietal cortex in action observation, and in particular that of manipulative actions, the aim of this study was to identify the parietal region, if any, that contributes to the processing of observed manipulative action (OMA) numerosity, using the functional magnetic resonance imaging technique. Twenty‐one right‐handed healthy volunteers performed two discrimination tasks while in the scanner, responding to video stimuli in which an actor performed manipulative actions on colored target balls that appeared four times consecutively. The subjects discriminated between two small numerosities of either OMAs (“Action” condition) or colors of balls (“Ball” condition). A significant difference between the “Action” and “Ball” conditions was observed in occipito‐temporal cortex and the putative human anterior intraparietal sulcus (phAIP) area as well as the third topographic map of numerosity‐selective neurons at the post‐central sulcus (NPC3) of the left parietal cortex. A further region of interest analysis of the group‐average data showed that at the single voxel level the latter area, more than any other parietal or occipito‐temporal numerosity map, favored numerosity of OAs. These results suggest that phAIP processes the identity of OMAs, while neighboring NPC3 likely processes the numerosity of the identified OAs.Item Open Access The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions(Elsevier BV., 2021-08-15) Ürgen, Burcu A.; Orban, G. A.Action observation is supported by a network of regions in occipito-temporal, parietal, and premotor cortex in primates. Recent research suggests that the parietal node has regions dedicated to different action classes including manipulation, interpersonal interactions, skin displacement, locomotion, and climbing. The goals of the current study consist of: 1) extending this work with new classes of actions that are communicative and specific to humans, 2) investigating how parietal cortex differs from the occipito-temporal and premotor cortex in representing action classes. Human subjects underwent fMRI scanning while observing three action classes: indirect communication, direct communication, and manipulation, plus two types of control stimuli, static controls which were static frames from the video clips, and dynamic controls consisting of temporally-scrambled optic flow information. Using univariate analysis, MVPA, and representational similarity analysis, our study presents several novel findings. First, we provide further evidence for the anatomical segregation in parietal cortex of different action classes: We have found a new site that is specific for representing human-specific indirect communicative actions in cytoarchitectonic parietal area PFt. Second, we found that the discriminability between action classes was higher in parietal cortex than the other two levels suggesting the coding of action identity information at this level. Finally, our results advocate the use of the control stimuli not just for univariate analysis of complex action videos but also when using multivariate techniques.