Browsing by Author "Norden, T."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access CdSe/CdMnS nanoplatelets with bilayer core and magnetically doped shell exhibit switchable excitonic circular polarization: Implications for lasers and light-emitting diodes(American Chemical Society, 2020-03) Najafi, A.; Tarasek, S.; Delikanlı, Savaş; Zhang, P.; Norden, T.; Shendre, S.; Sharma, Manoj; Bhattacharya, A.; Taghipour, Nima; Pientka, J.; Dedmir, Hilmi Volkan; Thomay, T.We utilized time-resolved photoluminescence (TRPL) spectroscopy to study the excitonic circular polarization (PX) from CdSe/CdMnS core/shell nanoplatelets (NPLs) with a bilayer core. This allows an extensive study of the emission dynamics as a function of magnetic field, temperature, doping concentration, and excitation wavelength. In the presence of an external magnetic field, pulsed excitation below the shell gap results in near-zero excitonic circular polarization PX at all time delays. In contrast, pulsed excitation with photon energy larger than the shell gap results in a rapid (100 ps) buildup of the excitonic circular polarization which subsequently remains constant at a level of up to 40%. We propose a model to describe the dynamics which takes into account the exchange interaction between carrier and magnetic ion (Mn) spins. The studied system exhibits a fast switchable excitonic circular polarization, implying possible applications in lasers and light emitting diodes.Item Open Access Magneto-optical studies of CdSe/CdMnS/CdS core/multi-shell colloidal nanoplatelets(SPIE, 2016) Petrou, A.; Scrace, T. A.; Murphy, J. R.; Zhang, P.; Norden, T.; Zhang, T.; Thomay, T.; Cartwright, A. N.; Delikanlı, Savaş; Akgül, Mehmet Zafer; Demir, Hilmi VolkanWe studied the photoluminescence (PL)) from CdSe/CdMnS/CdS core/multi-shell colloidal nanoplatelets, a versatile platform to study the interplay of optical properties and nanomagnetism. The photoluminescence (PL) exhibits σ+ polarization in the applied magnetic field. Our measurement detects the presence of even a single magnetic monolayer shell. The PLL consists of a higher and a lower energy component; the latter exhibits a circular polarization peak. The time-resolved PL (trPL) shows a red shift as function of time delay. At early (later) times the trPL spectra coincide with the high (low) energy PL component. A model is proposed to interpret these results.Item Open Access Time resolved photoluminescence study of magnetic CdSe/CdMnS/CdS core/multi-shell nanoplatelets(SPIE, 2017) Murphy, J. R.; Delikanlı, Savaş; Zhang, T.; Scrace, T. A.; Zhang, P.; Norden, T.; Thomay, T.; Cartwright, A. N.; Demir, Himli Volkan; Petrou, A.Colloidal semiconductor nanoplatelets (NPLs) are quasi 2D-nanostructures that are grown and processed inexpensively using a solution based method and thus have recently attracted considerable attention. We observe two features in the photoluminescence spectrum, suggesting two possible recombination channels. Their intensity ratio varies with temperature and two distinct temperature regions are identified; a low temperature region (10K < T < 90K) and a high temperature region (90K < T < 200K). This ratio increases with increasing temperature, suggesting that one recombination channel involves holes that are weakly localized with a localization energy of 0.043meV. A possible origin of these localized states are energy-variations in the xy-plane of the nanoplatelet. The presence of positive photoluminescence circular polarization in the magnetically-doped core/multi-shell NPLs indicates a hole-dopant exchange interaction and therefore the incorporated magnetic Manganese ions act as a marker that determines the location of the localized hole states.1 Time-resolved measurements show two distinct timescales (τfast and τslow) that can be modeled using a rate equation model. We identify these timescales as closely related to the corresponding recombination times for the channels. The stronger hole localization of one of these channels leads to a decreased electron-hole wave function overlap and thus a decreased oscillator strength and an increased lifetime. We show that we can model and understand the magnetic interaction of doped 2D-colloidal nanoplatelets which opens a pathway to solution processable spin controllable light sources. Copyright © 2017 SPIE.Item Open Access Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets(American Institute of Physics Inc., 2016) Murphy, J. R.; Delikanli S.; Scrace, T.; Zhang, P.; Norden, T.; Thomay, T.; Cartwright, A. N.; Demir, Hilmi Volkan; Petrou, A.We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.