Browsing by Author "Niya, J. M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Queue management for two-user cognitive radio with delay-constrained primary user(Elsevier, 2018) Mehr, K. A.; Niya, J. M.; Akar, NailIn this paper, two novel Queue Management Policies (QMP) are proposed for Quality of Service (QoS) enhancement of a two-user Cognitive Radio Network (CRN) comprising a Primary User (PU) and Secondary User (SU), the latter having non-causal information on PU's messages (or packets). Specifically, we aim to maximize the throughput of the SU while satisfying the delay criterion of the Primary User (PU). The first proposed QMP is a hybrid interweave/overlay scheme where all the SU's resources are devoted to the transmission of PU's packets. The second proposed QMP adaptively uses all or some of the SU's resources towards the transmission of the PU's packet, this decision being based on the packet's delay experienced in the PU queue. For this adaptive QMP, a novel multi-regime Markov fluid queue model is proposed via which closed-form expressions are derived and validated for the exact delay distribution for Poisson PU traffic and exponentially distributed packet lengths. Using this analytical tool, we optimally tune the parameters of the adaptive QMP and we show through numerical examples that it consistently outperforms the hybrid interweave/overlay model as well as two other conventional schemes in terms of SU throughput. We also show that the performance improvement attainable by the proposed QMP depends on the intensity of PU traffic as well as the channel conditions. A heuristic suboptimal parameter tuning scheme is also proposed with lesser computational complexity.Item Open Access Secrecy capacity results for a secure NOMA-based cognitive radio network with an external eavesdropper(Elsevier, 2020) Mehr, K. Adli; Niya, J. M.; Seyedarabi, H.; Nobar, S. K.In this paper, we investigate a secure cognitive radio network (CRN), which deploys non-orthogonal multiple access (NOMA) to deliver a mixed multicast and unicast traffic to the intended receivers, while keeping them secret from the eavesdroppers. This model represents a cognitive interference channel with an external eavesdropper (CIC-EE). In this model, there are one pair of primary nodes, one pair of secondary nodes, and an external eavesdropper. The primary transmitter multicasts a confidential message to both primary and secondary receivers, while trying to keep it secret from the eavesdropper. The secondary transmitter helps the primary user to deliver its message in exchange of transmission opportunity. The secondary message is unicasted to the secondary receiver, while concealing it from both primary receiver and the eavesdropper. This scenario models a NOMA-based overlay cognitive radio paradigm with an external eavesdropper. For this scenario, the achievable rate-equivocation region is obtained and its optimality is shown for a class of degraded channels. Then, the results obtained for the discrete memoryless channel are extended to the Gaussian channel model. Furthermore, by deploying numerical examples, a comparison is made between the proposed secure NOMA-based scheme, its orthogonal multiple access (OMA) based counterpart, and a cognitive interference channel without an external eavesdropper. It is shown that the NOMA-based method achieves significantly higher rates than its OMA based counterpart.