Browsing by Author "Nishimura, D. G."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Hadamard slice encoding for reduced-FOV diffusion-weighted imaging(John Wiley & Sons, 2014) Sarıtaş, Emine Ülkü; Lee, D.; Çukur, Tolga; Shankaranarayanan, A.; Nishimura, D. G.Methods: A 2D echo-planar RF pulse and matching multiband refocusing RF pulses were designed using the Shinnar-Le Roux algorithm to reduce band interference, and variable-rate selective excitation to shorten the pulse durations. Hadamardencoded images were resolved through a phase-preserving image reconstruction. The performance of the method was evaluated via simulations, phantom experiments, and in vivo high-resolution axial DWI of spinal cord.Purpose: To improve the clinical utility of diffusion-weighted imaging (DWI) by extending the slice coverage of a highresolution reduced field-of-view technique. Theory: Challenges in achieving high spatial resolution restrict the use of DWI in assessment of small structures such as the spinal cord. A reduced field-of-view method with 2D echo-planar radiofrequency (RF) excitation was recently proposed for high-resolution DWI. Here, a Hadamard sliceencoding scheme is proposed to double the slice coverage by exploiting the periodicity of the 2D echo-planar RF excitation profile.Results: The proposed scheme successfully extends the slice coverage, while preserving the sharp excitation profile and the reliable fat suppression of the original method. For in vivo axial DWI of the spinal cord, an in-plane resolution of 0.7 × 0.7 mm2 was achieved with 16 slices.Conclusion: The proposed Hadamard slice-encoding scheme doubles the slice coverage of the 2D echo-planar RF reduced field-of-view method without any scan-time penalty.Item Open Access Reduced field-of-view DWI with robust fat suppression and unrestricted slice coverage using tilted 2D RF excitation(John Wiley and Sons Inc., 2016) Banerjee, S.; Nishimura, D. G.; Shankaranarayanan, A.; Saritas, E. U.Purpose: Reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) using 2D echo-planar radiofrequency (2DRF) excitation has been widely and successfully applied in clinical settings. The purpose of this work is to further improve its clinical utility by overcoming slice coverage limitations without any scan time penalty while providing robust fat suppression. Theory and Methods: During multislice imaging with 2DRF pulses, periodic sidelobes in the slice direction cause partial saturation, limiting the slice coverage. In this work, a tilting of the excitation plane is proposed to push the sidelobes out of the imaging section while preserving robust fat suppression. The 2DRF pulse is designed using Shinnar-Le Roux algorithm on a rotated excitation k-space. The performance of the method is validated via simulations, phantom experiments, and high in-plane resolution in vivo DWI of the spinal cord. Results: Results show that rFOV DWI using the tilted 2DRF pulse provides increased signal-to-noise ratio, extended coverage, and robust fat suppression, without any scan time penalty. Conclusion: Using a tilted 2DRF excitation, a high-resolution rFOV DWI method with robust fat suppression and unrestricted slice coverage is presented. This method will be beneficial in clinical applications needing large slice coverage, for example, axial imaging of the spine, prostate, or breast. Magn Reson Med 76:1668–1676, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine