Browsing by Author "Nishimura, D."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Full‐brain coverage and high‐resolution imaging capabilities of passband b‐SSFP fMRI at 3T(Wiley‐Liss, Inc., 2008) Lee, J. H.; Dumoulin, S.; Sarıtaş, Emine Ülkü; Glover, G.; Wandell, B.; Nishimura, D.; Pauly, J.Passband balanced-steady-state free precession (b-SSFP)fMRI is a recently developed method that utilizes the passband(flat portion) of the b-SSFP off-resonance response to measureMR signal changes elicited by changes in tissue oxygenationfollowing increases in neuronal activity. Rapid refocusing andshort readout durations of b-SSFP, combined with the relativelylarge flat portion of the b-SSFP off-resonance spectrum allowsdistortion-free full-brain coverage with only two acquisitions.This allows for high-resolution functional imaging, without thespatial distortion frequently encountered in conventional high-resolution functional images. Finally, the 3D imaging compati-bility of the b-SSFP acquisitions permits isotropic-voxel-sizehigh-resolution acquisitions. In this study we address some ofthe major technical issues involved in obtaining passband b-SSFP-based functional brain images with practical imaging pa-rameters and demonstrate the advantages through breath-holding and visual field mapping experiments. Magn ResonMed 59:1099 –1110, 2008.Item Open Access Reduced field-of-view diffusion imaging of the human spinal cord: comparison with conventional single-shot echo-planar imaging(American Society of Neuroradiology, 2011) Zaharchuk, G.; Sarıtaş, Emine Ülkü; Andre, J.; Chin, C.; Rosenberg, J.; Brosnan, T.; Shankaranarayan, A.; Nishimura, D.; Fischbein, N.BACKGROUND AND PURPOSE: DWI of the spinal cord is challenging because of its small size and artifacts associated with the most commonly used clinical imaging method, SS-EPI. We evaluated the performance of rFOV spinal cord DWI and compared it with the routine fFOV SS-EPI in a clinical population. MATERIALS AND METHODS: Thirty-six clinical patients underwent 1.5T MR imaging examination that included rFOV SS-EPI DWI of the cervical spinal cord as well as 2 comparison diffusion sequences: fFOV SS-EPI DWI normalized for either image readout time (low-resolution fFOV) or spatial resolution (high-resolution fFOV). ADC maps were created and compared between the methods by using single-factor analysis of variance. Two neuroradiologists blinded to sequence type rated the 3 DWI methods, based on susceptibility artifacts, perceived spatial resolution, signal intensity–to-noise ratio, anatomic detail, and clinical utility. RESULTS: ADC values for the rFOV and both fFOV sequences were not statistically different (rFOV: 1.01 ± 0.18 × 10−3 mm2/s; low-resolution fFOV: 1.12 ± 0.22 × 10−3 mm2/s; high-resolution fFOV: 1.10 ± 0.21 × 10−3 mm2/s; F = 2.747, P > .05). The neuroradiologist reviewers rated the rFOV diffusion images superior in terms of all assessed measures (P < 0.0001). Particular improvements were noted in patients with metal hardware, degenerative disease, or both. CONCLUSIONS: rFOV DWI of the spinal cord overcomes many of the problems associated with conventional fFOV SS-EPI and is feasible in a clinical population. From a clinical standpoint, images were deemed superior to those created by using standard fFOV methods.Item Open Access SNR dependence of optimal parameters for apparent diffusion coefficient measurements(IEEE, 2011) Sarıtaş, Emine Ülkü; Lee, J.; Nishimura, D.Optimizing the diffusion-weighted imaging (DWI) parameters (i.e., the b -value and the number of image averages) to the tissue of interest is essential for producing high-quality apparent diffusion coefficient (ADC) maps. Previous investigation of this optimization was performed assuming Gaussian noise statistics for the ADC map, which is only valid for high signal-to-noise ratio (SNR) imaging. In this work, the true statistics of the noise in ADC maps are derived, followed by an optimization of the DWI parameters as a function of the imaging SNR. Specifically, it is demonstrated that the optimum b -value is a monotonically increasing function of the imaging SNR, which converges to the optimum b -value from previously proposed approaches for high-SNR cases, while exhibiting a significant deviation from this asymptote for low-SNR situations. Incorporating the effects of T 2 weighting further increases the SNR dependence of the optimal parameters. The proposed optimization scheme is particularly important for high-resolution DWI, which intrinsically suffers from low SNR and therefore cannot afford the use of the conventional high b -values. Comparison scans were performed for high-resolution DWI of the spinal cord, demonstrating the improvements in the resulting images and the ADC maps achieved by this method.