Browsing by Author "Naseri, M."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Global air quality and COVID-19 pandemic: do we breathe cleaner air?(Taiwan Association for Aerosol Research,Taiwan Qijiao Yanjiu Xuehui, 2021-02-08) Torkmahalleh, M. A.; Akhmetvaliyeva, Z.; Omran, A. D.; Omran, F. D.; Kazemitabar, M.; Naseri, M.; Motahareh, N.; Hamed, S.; Malekipirbazari, Milad; Adotey, E. K.; Soudabeh, G.; Neda, E.; Sabanov, S.; Alastuey, A.; Andrade, M. F.; Buonanno, G.; Carbone, S.; Cárdenas-Fuentes, D. E.; Cassee, F. R; Dai, Q.; Henríquez, A.; Hopke, P. K.; Keronen, P.; Khwaja, H. A.; Kim, J.; Kulmala, M.; Kumar, P.; Kushta, J.; Kuula, J.; Massagué, J.; Mitchell, T.; Mooibroek, D.; Morawska, L.; Niemi, J. V.; Ngagine, S. H.; Norman, M.; Oyama, B.; Oyola, P.; Öztürk, F.; Petäjä, T.; Querol, X.; Rashidi, Y.; Reyes, F.; Ross-Jones, M.; Salthammer, T.; Savvides, C.; Stabile, L.; Sjöberg, K.; Söderlund, K.; Raman, R. S.; Timonen, H.; Umezawa, M.; Viana, M.; Xie, S.The global spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has challenged most countries worldwide. It was quickly recognized that reduced activities (lockdowns) during the Coronavirus Disease of 2019 (COVID-19) pandemic produced major changes in air quality. Our objective was to assess the impacts of COVID-19 lockdowns on groundlevel PM2.5, NO2, and O3 concentrations on a global scale. We obtained data from 34 countries, 141 cities, and 458 air monitoring stations on 5 continents (few data from Africa). On a global average basis, a 34.0% reduction in NO2 concentration and a 15.0% reduction in PM2.5 were estimated during the strict lockdown period (until April 30, 2020). Global average O3 concentration increased by 86.0% during this same period. Individual country and continent-wise comparisons have been made between lockdown and business-as-usual periods. Universally, NO2 was the pollutant most affected by the COVID-19 pandemic. These effects were likely because its emissions were from sources that were typically restricted (i.e., surface traffic and non-essential industries) by the lockdowns and its short lifetime in the atmosphere. Our results indicate that lockdown measures and resulting reduced emissions reduced exposure to most harmful pollutants and could provide global-scale health benefits. However, the increased O3 may have substantially reduced those benefits and more detailed health assessments are required to accurately quantify the health gains. At the same, these restrictions were obtained at substantial economic costs and with other health issues (depression, suicide, spousal abuse, drug overdoses, etc.). Thus, any similar reductions in air pollution would need to be obtained without these extensive economic and other consequences produced by the imposed activity reductions.Item Open Access The impact of frying aerosol on human brain activity(Elsevier, 2019) Naseri, M.; Jouzizadeh, M.; Tabesh, M.; Malekipirbazari, Milad; Gabdrashova, R.; Nurzhan, S.; Farrokhi, H.; Khanbabaie, R.; Mehri-Dehnavi, H.; Bekezhankyzy, Z.; Gimnkhan, A.; Dareini, M.; Kurmangaliyeva, A.; Islam, N.; Crape, B.; Buonanno, G.; Cassee, F.; Torkmahalleh, M.Knowledge on the impact of the exposure to indoor ultrafine particles (UFPs) on the human brain is restricted. Twelve non-atopic, non-smoking, and healthy adults (10 female and 7 male, in average 22 years old) were monitored for brain physiological responses via electroencephalographs (EEGs) during cooking. Frying ground beef meat in sunflower oil using electric stove without ventilation was conducted. UFPs, particulate matter (PM) (PM1, PM2.5, PM4, PM10), CO2, indoor temperature, RH, oil and meat temperatures were monitored continuously throughout the experiments. The UFP peak concentration was recorded to be approximately 2.0 × 105 particles/cm3. EEGs were recorded before exposure, at end of cooking when PM peak concentrations were observed, and 30 min after the end of the cooking session (post-exposure). Brain electrical activity statistically significantly changed during post-exposure compared to the before exposure, suggesting the translocation of UFPs to the brain, occurring solely in the frontal and temporal lobes of the brain. Study participants older than 25 were more susceptible to UFPs compared to those younger than 25. Also, the brain abnormality was mainly driven by male rather than female study participants. The brain slow-wave band (delta) decreased while the fast-wave band (Beta3) increased similar to the pattern found in the literature for the exposure to smoking fumes and diesel exhaust.Item Open Access The impact on heart rate and blood pressure following exposure to ultrafine particles from cooking using an electric stove(Elsevier, 2020-08-02) Gabdrashova, R.; Nurzhan, S.; Naseri, M.; Bekezhankyzy, Z.; Gimnkhan, A.; Malekipirbazari, Milad; Tabesh, M.; Khanbabaie, R.; Crape, B.; Buonanno, G.; Hopke, P. K.; Torkmahalleh, A. A.; Torkmahalleh, M. A.; Aleya, L.Cooking is a major source of indoor particulate matter (PM), especially ultrafine particles (UFPs). Long-term exposure to fine and ultrafine particles (UFPs) has been associated with adverse human health effects. Toxicological studies have demonstrated that exposure to PM2.5 (particles with aerodynamic diameter smaller than 2.5 μm) may result in increased blood pressure (BP). Some clinical studies have shown that acute exposure to PM2.5 causes changes in systolic (SBP) and diastolic blood pressure (DBP), depending on the source of particles. Studies assessing the effect of exposure to cooking PM on BP and heart rate (HR) using electric or gas stoves are not well represented in the literature. The aim of this investigation was to perform controlled studies to quantify the exposure of 50 healthy volunteer participants to fine and ultrafine particles emitted from a low-emissions recipe for frying ground beef on an electric stove. The BP and heart rate (HR) of the volunteers were monitored during exposure and after the exposure (2 h post-exposure). Maximum UFP and PM2.5 concentrations were 6.5 × 104 particles/cm3 and 0.017 mg/m3, respectively. Exposure to UFPs from frying was associated with statistically significant increases in the SBP. The lack of food and drink during the 2 h post-cooking period was also associated with a statistically significant reduction in SBP. No statistically significant changes in DBP were observed. Physiological factors, including heat stress over the stove, movements and anxiety, could be responsible for an elevation in HR at the early stages of the experiments with a subsequent drop in HR after 90 min post-cooking, when study participants were relaxed in a living room.