Browsing by Author "Namer, I. J."
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Characterization of the transcriptional and metabolic responses of pediatric high grade gliomas to mTOR-HIF-1a...(Impact Journals LLC, 2017-03-23) Nguyen, A.; Moussallieh, F. M.; Mackay, A.; Cicek, A. E.; Coca, A.; Chenard, M. P.; Weingertner, N.; Lhermitte, B.; Letouzé, E.; Guérin, E.; Pencreach, E.; Jannier, S.; Guenot, D.; Namer, I. J.; Jones, C.; Entz-Werlé, N.Pediatric high grade glioma (pHGGs), including sus-tentorial and diffuse intrinsic pontine gliomas, are known to have a very dismal prognosis. For instance, even an increased knowledge on molecular biology driving this brain tumor entity, there is no treatment able to cure those patients. Therefore, we were focusing on a translational pathway able to increase the cell resistance to treatment and to reprogram metabolically tumor cells, which are, then, adapting easily to a hypoxic microenvironment. To establish, the crucial role of the hypoxic pathways in pHGGs, we, first, assessed their protein and transcriptomic deregulations in a pediatric cohort of pHGGs and in pHGG’s cell lines, cultured in both normoxic and hypoxic conditions. Secondly, based on the concept of a bi-therapy targeting in pHGGs mTORC1 (rapamycin) and HIF-1α (irinotecan), we hypothesized that the balanced expressions between RAS/ERK, PI3K/AKT and HIF-1α/HIF-2α/MYC proteins or genes may provide a modulation of the cell response to this double targeting. Finally, we could evidence three protein, genomic and metabolomic profiles of response to rapamycin combined with irinotecan. The pattern of highly sensitive cells to mTOR/HIF-1α targeting was linked to a MYC/ERK/HIF-1α over-expression and the cell resistance to a major hyper-expression of HIF-2α.Item Open Access An integrated genomic and metabolomic approach for defining survival time in adult oligodendrogliomas patients(Springer, 2019) Bund, C.; Guergova‑Kuras, M.; Çiçek, A. Ercüment; Moussallieh, F.-M.; Dali‑Youcef, N.; Piotto, M.; Schneider, P.; Heller, R.; Entz‑Werle, N.; Lhermitte, B.; Chenard, M.-P.; Schott, R.; Proust, F.; Noel, G.; Namer, I. J.Introduction The identification of frequent acquired mutations shows that patients with oligodendrogliomas have divergent biology with differing prognoses regardless of histological classification. A better understanding of molecular features as well as their metabolic pathways is essential. Objectives The aim of this study was to examine the relationship between the tumor metabolome, six genomic aberrations (isocitrate dehydrogenase1 [IDH1] mutation, 1p/19q codeletion, tumor protein p53 [TP53] mutation, O6-methylguanin-DNA methyltransferase [MGMT] promoter methylation, epidermal growth factor receptor [EGFR] amplification, phosphate and tensin homolog [PTEN] methylation), and the patients’ survival time. Methods We applied 1H high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy to 72 resected oligodendrogliomas. Results The presence of IDH1, TP53, 1p19q codeletion, MGMT promoter methylation reduced the relative risk of death, whereas PTEN methylation and EGFR amplification were associated with poor prognosis. Increased concentration of 2-hydroxyglutarate (2HG), N-acetyl-aspartate (NAA), myo-inositol and the glycerophosphocholine/phosphocholine (GPC/ PC) ratio were good prognostic factors. Increasing the concentration of serine, glycine, glutamate and alanine led to an increased relative risk of death. Conclusion HRMAS NMR spectroscopy provides accurate information on the metabolomics of oligodendrogliomas, making it possible to find new biomarkers indicative of survival. It enables rapid characterization of intact tissue and could be used as an intraoperative method.Item Open Access Machine learning assisted intraoperative assessment of brain tumor margins using HRMAS NMR spectroscopy(Public Library of Science, 2020) Çakmakçı, Doruk; Karakaşlar, Emin Onur; Ruhland, E.; Chenard, M.-P.; Proust, F.; Piotto, M.; Namer, I. J.; Çicek, A. ErcümentComplete resection of the tumor is important for survival in glioma patients. Even if the gross total resection was achieved, left-over micro-scale tissue in the excision cavity risks recurrence. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) technique can distinguish healthy and malign tissue efficiently using peak intensities of biomarker metabolites. The method is fast, sensitive and can work with small and unprocessed samples, which makes it a good fit for real-time analysis during surgery. However, only a targeted analysis for the existence of known tumor biomarkers can be made and this requires a technician with chemistry background, and a pathologist with knowledge on tumor metabolism to be present during surgery. Here, we show that we can accurately perform this analysis in real-time and can analyze the full spectrum in an untargeted fashion using machine learning. We work on a new and large HRMAS NMR dataset of glioma and control samples (n = 565), which are also labeled with a quantitative pathology analysis. Our results show that a random forest based approach can distinguish samples with tumor cells and controls accurately and effectively with a median AUC of 85.6% and AUPR of 93.4%. We also show that we can further distinguish benign and malignant samples with a median AUC of 87.1% and AUPR of 96.1%. We analyze the feature (peak) importance for classification to interpret the results of the classifier. We validate that known malignancy biomarkers such as creatine and 2-hydroxyglutarate play an important role in distinguishing tumor and normal cells and suggest new biomarker regions. The code is released at http://github.com/ciceklab/HRMAS_NC.Item Open Access Metabolomic profile of aggressive meningiomas by using highresolution magic angle spinning nuclear magnetic resonance(American Chemical Society, 2020) Bender, L.; Somme, F.; Ruhland, E.; Çiçek, A. Ercüment; Bund, C.; Namer, I. J.Meningiomas are in most cases benign brain tumors. The WHO 2016 classification defines three grades of meningiomas. This classification had a prognosis value because grade III meningiomas have a worse prognosis value compared to grades I and II meningiomas. However, some benign or atypical meningiomas can have a clinical aggressive behavior. There are currently no reliable markers which allow distinguishing between the meningiomas with a good prognosis and those which may recur. High-resolution magic angle spinning (HRMAS) spectrometry is a noninvasive method able to determine the metabolite profile of a tissue sample. We retrospectively analyzed 62 meningioma samples by using HRMAS spectrometry (43 metabolites). We described a metabolic profile defined by a high concentration for acetate, threonine, N-acetyl-lysine, hydroxybutyrate, myoinositol, ascorbate, scylloinositol, and total choline and a low concentration for aspartate, glucose, isoleucine, valine, adenosine, arginine, and alanine. This metabolomic signature was associated with poor prognosis histological markers [Ki-67 ≥ 40%, high histological grade and negative progesterone receptor (PR) expression]. We also described a similar metabolomic spectrum between grade III and grade I meningiomas. Moreover, all grade I meningiomas with a low Ki-67 expression and a positive PR expression did not have the same metabolomic profile. Metabolomic analysis could be used to determine an aggressive meningioma in order to discuss a personalized treatment. Further studies are needed to confirm these results and to correlate this metabolic profile with survival data.Item Open Access Metabolomics approaches in experimental allergic encephalomyelitis(Elsevier, 2018) Battini, B.; Bund, C.; Moussallieh, F. M.; Çiçek, A. Ercüment; De Sèze, J.; Namer, I. J.A myelin basic protein (MBP)-induced experimental allergic encephalomyelitis (EAE) involves paraplegia due to a reversible thoracolumbar spinal cord impairment. The aims of this study were thus to find significant metabolic biomarkers of inflammation and identify the site of inflammation in the central nervous system (CNS) during the acute signs in of the disease using metabolomics. All the EAE samples were associated with higher levels of lactate, ascorbate, glucose and amino acids, and decreased level of N-acetyl-aspartate (NAA) compared to the control group. A decreased NAA level has been particularly shown in lumbar spinal cord in relationship with the clinical signs.Item Open Access Metabolomics approaches in pancreatic adenocarcinoma: Tumor metabolism profiling predicts clinical outcome of patients(BioMed Central Ltd., 2017) Battini, S.; Faitot, F.; Imperiale, A.; Cicek, A. E.; Heimburger, C.; Averous, G.; Bachellier, P.; Namer, I. J.Pancreatic adenocarcinomas (PAs) have very poor prognoses even when surgery is possible. Currently, there are no tissular biomarkers to predict long-term survival in patients with PA. The aims of this study were to (1) describe the metabolome of pancreatic parenchyma (PP) and PA, (2) determine the impact of neoadjuvant chemotherapy on PP and PA, and (3) find tissue metabolic biomarkers associated with long-term survivors, using metabolomics analysis. Methods: 1H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy using intact tissues was applied to analyze metabolites in PP tissue samples (n = 17) and intact tumor samples (n = 106), obtained from 106 patients undergoing surgical resection for PA. Results: An orthogonal partial least square-discriminant analysis (OPLS-DA) showed a clear distinction between PP and PA. Higher concentrations of myo-inositol and glycerol were shown in PP, whereas higher levels of glucose, ascorbate, ethanolamine, lactate, and taurine were revealed in PA. Among those metabolites, one of them was particularly obvious in the distinction between long-term and short-term survivors. A high ethanolamine level was associated with worse survival. The impact of neoadjuvant chemotherapy was higher on PA than on PP. Conclusions: This study shows that HRMAS NMR spectroscopy using intact tissue provides important and solid information in the characterization of PA. Metabolomics profiling can also predict long-term survival: the assessment of ethanolamine concentration can be clinically relevant as a single metabolic biomarker. This information can be obtained in 20 min, during surgery, to distinguish long-term from short-term survival. © 2017 The Author(s).Item Open Access Metabolomics of small intestine neuroendocrine tumors and related hepatic metastases(MDPI AG, 2019-12) Çiçek, A. Ercüment; Imperiale, A.; Poncet, G.; Addeo, P.; Ruhland, E.; Roche, C.; Battini, S.; Chenard, M. P.; Hervieu, V.; Goichot, B.; Bachellier, P.; Walter, T.; Namer, I. J.To assess the metabolomic fingerprint of small intestine neuroendocrine tumors (SI-NETs) and related hepatic metastases, and to investigate the influence of the hepatic environment on SI-NETs metabolome. Ninety-four tissue samples, including 46 SI-NETs, 18 hepatic NET metastases and 30 normal SI and liver samples, were analyzed using 1H-magic angle spinning (HRMAS) NMR nuclear magnetic resonance (NMR) spectroscopy. Twenty-seven metabolites were identified and quantified. Differences between primary NETs vs. normal SI and primary NETs vs. hepatic metastases, were assessed. Network analysis was performed according to several clinical and pathological features. Succinate, glutathion, taurine, myoinositol and glycerophosphocholine characterized NETs. Normal SI specimens showed higher levels of alanine, creatine, ethanolamine and aspartate. PLS-DA revealed a continuum-like distribution among normal SI, G1-SI-NETs and G2-SI-NETs. The G2-SI-NET distribution was closer and clearly separated from normal SI tissue. Lower concentration of glucose, serine and glycine, and increased levels of choline-containing compounds, taurine, lactate and alanine, were found in SI-NETs with more aggressive tumors. Higher abundance of acetate, succinate, choline, phosphocholine, taurine, lactate and aspartate discriminated liver metastases from normal hepatic parenchyma. Higher levels of alanine, ethanolamine, glycerophosphocholine and glucose was found in hepatic metastases than in primary SI-NETs. The present work gives for the first time a snapshot of the metabolomic characteristics of SI-NETs, suggesting the existence of complex metabolic reality, maybe characteristic of different tumor evolution.Item Open Access PiDeeL: metabolic pathway-informed deep learning model for survival analysis and pathological classification of gliomas(Oxford University Press, 2023-11-11) Kaynar, Gün; Çakmakçı, D.; Bund, C.; Todeschi, J.; Namer, I. J.; Çiçek, A. Ercüment; Martelli, Pier LuigiOnline assessment of tumor characteristics during surgery is important and has the potential to establish an intra-operative surgeon feedback mechanism. With the availability of such feedback, surgeons could decide to be more liberal or conservative regarding the resection of the tumor. While there are methods to perform metabolomics-based tumor pathology prediction, their model complexity predictive performance is limited by the small dataset sizes. Furthermore, the information conveyed by the feedback provided on the tumor tissue could be improved both in terms of content and accuracy. Results In this study, we propose a metabolic pathway-informed deep learning model (PiDeeL) to perform survival analysis and pathology assessment based on metabolite concentrations. We show that incorporating pathway information into the model architecture substantially reduces parameter complexity and achieves better survival analysis and pathological classification performance. With these design decisions, we show that PiDeeL improves tumor pathology prediction performance of the state-of-the-art in terms of the Area Under the ROC Curve by 3.38% and the Area Under the Precision–Recall Curve by 4.06%. Similarly, with respect to the time-dependent concordance index (c-index), PiDeeL achieves better survival analysis performance (improvement of 4.3%) when compared to the state-of-the-art. Moreover, we show that importance analyses performed on input metabolite features as well as pathway-specific neurons of PiDeeL provide insights into tumor metabolism. We foresee that the use of this model in the surgery room will help surgeons adjust the surgery plan on the fly and will result in better prognosis estimates tailored to surgical procedures.Item Open Access Predicting carbon spectrum in Heteronuclear Single Quantum Coherence Spectroscopy for online feedback during surgery(IEEE, 2020) Karakaşlar, E. Onur; Coşkun, B.; Outilaft, H.; Namer, I. J.; Çiçek, A. Ercüment1H High-Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) is a reliable technology used for detecting metabolites in solid tissues. Fast response time enables guiding surgeons in real time, for detecting tumor cells that are left over in the excision cavity. However, severe overlap of spectral resonances in 1D signal often render distinguishing metabolites impossible. In that case, Heteronuclear Single Quantum Coherence Spectroscopy (HSQC) NMR is applied which can distinguish metabolites by generating 2D spectra (1H-13C). Unfortunately, this analysis requires much longer time and prohibits real time analysis. Thus, obtaining 2D spectrum fast has major implications in medicine. In this study, we show that using multiple multivariate regression and statistical total correlation spectroscopy, we can learn the relation between the 1H and 13C dimensions. Learning is possible with small sample sizes and without the need for performing the HSQC analysis, we can predict the 13C dimension by just performing 1H HRMAS NMR experiment. We show on a rat model of central nervous system tissues (80 samples, 5 tissues) that our methods achieve 0.971 and 0.957 mean R2 values, respectively. Our tests on 15 human brain tumor samples show that we can predict 104 groups of 39 metabolites with 97 percent accuracy. Finally, we show that we can predict the presence of a drug resistant tumor biomarker (creatine) despite obstructed signal in 1H dimension. In practice, this information can provide valuable feedback to the surgeon to further resect the cavity to avoid potential recurrence.Item Open Access Targeted metabolomics analyses for brain tumor margin assessment during surgery(Oxford University Press, 2022-06-15) Çakmakçı, D.; Kaynar, Gün; Bund, C.; Piotto, M.; Proust, F.; Namer, I. J.; Çiçek, A. ErcümentMotivation: Identification and removal of micro-scale residual tumor tissue during brain tumor surgery are key for survival in glioma patients. For this goal, High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) spectroscopy-based assessment of tumor margins during surgery has been an effective method. However, the time required for metabolite quantification and the need for human experts such as a pathologist to be present during surgery are major bottlenecks of this technique. While machine learning techniques that analyze the NMR spectrum in an untargeted manner (i.e. using the full raw signal) have been shown to effectively automate this feedback mechanism, high dimensional and noisy structure of the NMR signal limits the attained performance. Results: In this study, we show that identifying informative regions in the HRMAS NMR spectrum and using them for tumor margin assessment improves the prediction power. We use the spectra normalized with the ERETIC (electronic reference to access in vivo concentrations) method which uses an external reference signal to calibrate the HRMAS NMR spectrum. We train models to predict quantities of metabolites from annotated regions of this spectrum. Using these predictions for tumor margin assessment provides performance improvements up to 4.6% the Area Under the ROC Curve (AUC-ROC) and 2.8% the Area Under the Precision-Recall Curve (AUC-PR). We validate the importance of various tumor biomarkers and identify a novel region between 7.97 ppm and 8.09 ppm as a new candidate for a glioma biomarker. Availability and implementation: The code is released at https://github.com/ciceklab/targeted_brain_tumor_margin_ assessment. The data underlying this article are available in Zenodo, at https://doi.org/10.5281/zenodo.5781769.Item Open Access What does reduced FDG uptake mean in high-grade gliomas?(NLM (Medline), 2019) Bund, C.; Lhermitte, B.; Çiçek, A. Ercüment; Ruhland, E.; Proust, F.; Namer, I. J.Purpose: As well as in many others cancers, FDG uptake is correlated with the degree of malignancy in gliomas, that is, commonly high FDG uptake in high-grade gliomas. However, in clinical practice, it is not uncommon to observe high-grade gliomas with low FDG uptake. Our aim was to explore the tumor metabolism in 2 populations of high-grade gliomas presenting high or low FDG uptake. Methods: High-resolution magic-angle spinning nuclear magnetic resonance spectroscopy was realized on tissue samples from 7 high-grade glioma patients with high FDG uptake and 5 high-grade glioma patients with low FDG uptake. Tumor metabolomics was evaluated from 42 quantified metabolites and compared by network analysis. Results: Whether originating from astrocytes or oligodendrocytes, the highgrade gliomas with low FDG avidity represent a subgroup of high-grade gliomas presenting common characteristics: low aspartate, glutamate, and creatine levels, which are probably related to the impaired electron transport chain in mitochondria; high serine/glycine metabolism and so one-carbon metabolism; low glycerophosphocholine-phosphocholine ratio in membrane metabolism, which is associated with tumor aggressiveness; and finally negative MGMT methylation status. Conclusions: It seems imperative to identify this subgroup of high-grade gliomas with low FDG avidity, which is especially aggressive. Their identification could be important for early detection for a possible personalized treatment, such as antifolate treatment.