Browsing by Author "Mullikin, J. C."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Author Correction: A robust benchmark for detection of germline large deletions and insertions(Nature Research, 2020) Zook, J. M.; Hansen, N. F.; Olson, N. D.; Chapman, L.; Mullikin, J. C.; Xiao, C.; Sherry, S.; Koren, S.; Phillippy, A. M.; Boutros, P. C.; Sahraeian, S. M. E.; Huang, V.; Rouette, A.; Alexander, N.; Mason, C. E.; Hajirasouliha, I.; Ricketts, C.; Lee, J.; Tearle, R.; Fiddes, I. T.; Barrio, A. M.; Wala, J.; Carroll, A.; Ghaffari, N.; Rodriguez, O. L.; Bashir, A.; Jackman, S.; Farrell, J. J.; Wenger, A. M.; Alkan, Can; Söylev, A.; Schatz, M. C.; Garg, S.; Church, G.; Marschall, T.; Chen, K.; Fan, X.; English, A. C.; Rosenfeld, J. A.; Zhou, W.; Mills, R. E.; Sage, J. M.; Davis, J. R.; Kaiser, M. D.; Oliver, J. S.; Catalano, A. P.; Chaisson, M. J. P.; Spies, N.; Sedlazeck, F. J.; Salit, M.New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution and comprehensiveness. To help translate these methods to routine research and clinical practice, we developed a sequence-resolved benchmark set for identification of both false-negative and false-positive germline large insertions and deletions. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle Consortium integrated 19 sequence-resolved variant calling methods from diverse technologies. The final benchmark set contains 12,745 isolated, sequence-resolved insertion (7,281) and deletion (5,464) calls ≥50 base pairs (bp). The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.51 Gbp and 5,262 insertions and 4,095 deletions supported by ≥1 diploid assembly. We demonstrate that the benchmark set reliably identifies false negatives and false positives in high-quality SV callsets from short-, linked- and long-read sequencing and optical mapping.Item Open Access Great ape genetic diversity and population history(Nature Publishing Group, 2013) Prado-Martinez, J.; Eichler, E. E.; Marques-Bonet, T.; Sudmant, P. H.; Kidd, J. M.; Li, H.; Kelley, J. L.; Lorente-Galdos, B.; Veeramah, K. R.; Woerner, A. E.; O’Connor, T. D.; Santpere, G.; Cagan, A.; Theunert, C.; Casals, F.; Laayouni, H.; Munch, K.; Hobolth, A.; Halager, A. E.; Malig, M.; Hernandez-Rodriguez, J.; Hernando-Herraez, I.; Prüfer, K.; Pybus, M.; Johnstone, L.; Lachmann, M.; Alkan C.; Twig, D.; Petit, N.; Baker, C.; Hormozdiari, F.; Fernandez-Callejo, M.; Dabad, M.; Wilson, M. L.; Stevison, L.; Camprubí, C.; Carvalho, T.; RuizHerrera, A.; Vives, L.; Mele, M.; Abello, T.; Kondova, I.; Bontrop, R. E.; Pusey, A.; Lankester, F.; Kiyang, J. A.; Bergl, R. A.; Lonsdorf, E.; Myers, S.; Ventura, M.; Gagneux, P.; Comas, D.; Siegismund, H.; Blanc, J.; Agueda-Calpena, L.; Gut, M.; Fulton, L.; Tishkoff, S. A.; Mullikin, J. C.; Wilson, R. K.; Gut, I. G.; Gonder, M K.; Ryder, O. A.; Hahn, B. H.; Navarro, A.; Akey, J. M.; Bertranpetit, J.; Reich, D.; Mailund, T.; Schierup, M. H.; Hvilsom, C.; Andrés, A. M.; Wall, J. D.; Bustamante, C. D.; Hammer, M. F.Most great ape genetic variation remains uncharacterized(1,2); however, its study is critical for understanding population history(3-6), recombination(7), selection(8) and susceptibility to disease(9,10). Here we sequence to high coverage a total of 79 wild-and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.