Browsing by Author "Moldoveanu V."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Current enhancement and negative differential conductance in parallel quantum dot systems(American Institute of Physics, 2011) Tanatar, Bilal; Moldoveanu V.We present calculations on the transport properties of a double quantum dot (DQD) capacitively coupled to another individually biased dot. The effects of the intradot and interdot Coulomb interaction are included within the random-phase approximation (RPA) implemented in the Keldysh formalism. We show that by increasing the bias on the nearby dot the inelastic Coulomb scattering modifies the current in the double dot. The sign of the current depends on the detuning of the double dot levels and intradot transitions lead to negative differential conductance. The enhancement of the current due to the energy quanta transferred from the strongly biased dot suggests a quantum ratchet or Coulomb drag mechanism. © 2011 American Institute of Physics.Item Open Access Electronic transmittance phase extracted from mesoscopic interferometers(2012) Tolea, M.; Moldoveanu V.; Dinu I.V.; Tanatar, BilalThe usual experimental set-up for measuring the wave function phase shift of electrons tunneling through a quantum dot (QD) embedded in a ring (i.e., the transmittance phase) is the so-called 'open' interferometer as first proposed by Schuster et al. in 1997, in which the electrons back-scattered at source and the drain contacts are absorbed by additional leads in order to exclude multiple interference. While in this case one can conveniently use a simple two-path interference formula to extract the QD transmittance phase, the open interferometer has also a number of draw-backs, such as a reduced signal and some uncertainty regarding the effects of the extra leads. Here we present a meaningful theoretical study of the QD transmittance phase in 'closed' interferometers (i.e., connected only to source and drain leads). By putting together data from existing literature and giving some new proofs, we show both analytically and by numerical simulations that the existence of phase lapses between consecutive resonances of the 'bare' QD is related to the signs of the corresponding Fano parameters - of the QD + ring system. More precisely, if the Fano parameters have the same sign, the transmittance phase of the QD exhibits a π lapse. Therefore, closed mesoscopic interferometers can be used to address the 'universal phase lapse' problem. Moreover, the data from already existing Fano interference experiments from Kobayashi et al. in 2003 can be used to infer the phase lapses. © 2012 Tolea et al.Item Open Access Spin filtering in a quantum ring with Rashba coupling(IEEE, 2010) Tanatar, Bilal; Moldoveanu V.We study the effect of Rashba spin-orbit coupling on the spin interference in a non-interacting one-dimensional ring connected to two lead theoretically within the non-equilibrium Greens' function formalism. We compute the charge and spin currents and analyze their Aharonov-Bohm oscillations. The geometry of the system is conveniently described by the angle δ between the two leads. We show that for δ=180° (i.e for symmetrically coupled leads) a good tutering of up or down spin orientation is obtained around half-integer multiples of Φ/Φ0. These particular flux values correspond to degeneracy points for clockwise and counter-clockwise propagating state related to the same spin orientation in the local spin frame of the ring. In contrast, for the asymmetric coupling, i.e., δ=135° the filter efficiency is maximum around integer multiples of Φ/Φ0. The numerical results suggest that the spin filtering is obtained when the clockwise or counter-clockwise states interfere destructively. The spin filtering regime is stable against variations of the bias applied on the system. ©2010 IEEE.