Browsing by Author "Modi, V."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Benefits of forecasting and energy storage in isolated grids with large wind penetration – The case of Sao Vicente(Elsevier, 2017) Yuan, S.; Kocaman, A.S.; Modi, V.For electric grids that rely primarily on liquid fuel based power generation for energy provision, e.g. one or more diesel gensets, measures to allow a larger fraction of intermittent sources can pay-off since the displaced is high cost diesel powered generation. This paper presents a case study of Sao Vicente, located in Cape Verde where a particularly high fraction of wind capacity of 5.950�MW (75% of the average demand) is installed, with diesel gensets forming the dispatchable source of power. This high penetration of intermittent power is managed through conservative forecasting and curtailments. Two potential approaches to reduce curtailments are examined in this paper: 1) an improved wind speed forecasting using a rolling horizon ARIMA model; and 2) energy storage. This case study shows that combining renewable energy forecasting and energy storage is a promising solution which enhances diesel fuel savings as well as enables the isolated grid to further increase the annual renewable energy penetration from the current 30.4% up to 38% while reducing grid unreliability. In general, since renewable energy forecasting ensures more accurate scheduling and energy storage absorbs scheduling error, this solution is applicable to any small size isolated power grid with large renewable energy penetration.Item Open Access A scalable framework to measure the impact of spatial heterogeneity on electrification(Elsevier Ltd., 2021-02) Fobi, S.; Kocaman, Ayşe Selin; Taneja, J.; Modi, V.We propose a scalable computational framework to examine the effects of settlement patterns on the electrification of an entire country. We first propose a data processing strategy to convert structure locations, identified from satellite imagery, to estimated household locations using census data. Then, we present a computational framework that involves a two-level network design algorithm to find an abstract representation of the power distribution system at a national scale involving low voltage (LV) wires, medium voltage (MV) wires, and the transformers between the two levels of the system. Given the system components, we introduce three metrics for per-household connectivity requirements of LV and MV wires, and transformers to interpret our results at the administrative and the sub-administrative unit levels. With our administrative level analysis provided for 9.2 million structures in Kenya, we show that traditional rural/urban classification based on population density may not be enough and is often deceiving in estimating the cost of electrification and a new categorization based on our metrics provides more relevant estimates on the total cost. Moreover, our metrics can help determine the least-cost electrification option (e.g.,grid, mini-grid, or stand-alone systems) for expanding access in the sub-administrative unit level and create a platform to perform sensitivity analysis based on different cost components. Our work demonstrates the potential for improvements in universal electrification combining new and more detailed data sources with a scalable planning framework and helps governments achieve Sustainable Development Goal 7 (SDG7) more quickly and at lower cost.Item Open Access A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems(Elsevier, 2020) Kocaman, Ayşe Selin; Özyörük, Emin; Taneja, S.; Modi, V.Pumping of water for agriculture can be a flexible component of electric demand. In this study, a framework that involves scenario based stochastic programming models is developed to examine the effect of load shifting on the renewable energy system sizing for agricultural load. With the help of this framework, alternative load shifting policies are evaluated to observe how the intrinsic flexibility of agricultural load reduces the amount of investments while designing a renewable system. Using real data from India’s Gujarat region, solar and wind cases are evaluated separately to understand the coherency between these sources and the agricultural demand. The value of using a dispatchable source to help with the intermittency of the renewable sources in the systems is discussed. It is also shown that energy storage can be a convenient control mechanism for the integration of renewables; however, is an expensive substitute for demand response programs for agricultural load. Benchmarks for the incentive amounts that can be provided for alternative load shifting policies are presented.Item Open Access A stochastic model for a macroscale hybrid renewable energy system(Elsevier, 2016) Kocaman, A. S.; Abad, C.; Troy, T. J.; Huh, W. T.; Modi, V.The current supply for electricity generation mostly relies on fossil fuels, which are finite and pose a great threat to the environment. Therefore, energy models that involve clean and renewable energy sources are necessary to ease the concerns about the electricity generation needed to meet the projected demand. Here, we mathematically model a hybrid energy generation and allocation system where the intermittent solar generation is supported by conventional hydropower stations and diesel generation and time variability of the sources are balanced using the water stored in the reservoirs. We develop a two-stage stochastic model to capture the effect of streamflows which present significant inter-annual variability and uncertainty. Using sample case studies from India, we determine the required hydropower generation capacity and storage along with the minimal diesel usage to support 1 GWpeak solar power generation. We compare isolated systems with the connected systems (through inter-regional transmission) to see the effects of geographic diversity on the infrastructure sizing and quantify the benefits of resource-sharing. We develop the optimal sizing relationship between solar and hydropower generation capacities given realistic cost parameters and real data and examine how this relationship would differ as the contribution of diesel is reduced. We also show that if the output of the solar power stations can be controlled (i.e. spill is allowed in our setting), operating them below their maximum energy generation levels may reduce the unit cost of the system.Item Open Access Value of pumped hydro storage in a hybrid energy generation and allocation system(Elsevier, 2017) Kocaman, A. S.; Modi, V.Transition from fossil fuels to renewable sources is inevitable. In this direction, variation and intermittency of renewables can be integrated into the grid by means of hybrid systems that operate as a combination of alternative resources, energy storage and long distance transmission lines. In this study, we propose a two-stage stochastic mixed-integer programming model for sizing an integrated hybrid energy system, in which intermittent solar generation in demand points is supported by pumped hydro storage (PHES) systems and diesel is used as an expensive back-up source. PHES systems work as a combination of pumped storage and conventional hydropower stations since there is also natural streamflow coming to the upper reservoirs that shows significant seasonal and inter-annual variability and uncertainty. With several case studies from India, we examine the role of high hydropower potential in the Himalaya Mountains to support solar energy generation in the form of pumped hydro or conventional hydro system while meeting the demand at various scales. We show that pumped hydro storage can keep the diesel contribution to meet the demand less than 10%, whereas this number can go up to more than 50% for conventional systems where the streamflow potential is limited compared to the demand. We also examine the role of pumped hydro systems in both isolated and connected systems (through inter-regional transmission lines) and show that the benefit of pumped hydro is more significant in isolated systems and resource-sharing in connected systems can substitute for energy storage. In addition, with the help of the proposed model, we show that the upper reservoir size of a pumped hydro system could be lower than the reservoir size of a conventional hydropower system depending on the demand scale and streamflow availability. This means that, most of the current conventional hydropower stations could be converted to pumped hydropower stations without needing to modify the upper reservoir, leading to a significantly reduced diesel contribution and lower system unit cost.