Browsing by Author "Maragò, O. M."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser(Nature Publishing Group, 2019-06) Kalantarifard, Fatemeh; Elahi, Parviz; Makey, Ghaith; İlday, F. Ömer; Volpe, Giovanni; Maragò, O. M.Standard optical tweezers rely on optical forces arising when a focused laser beam interacts with a microscopic particle: scattering forces, pushing the particle along the beam direction, and gradient forces, attracting it towards the high-intensity focal spot. Importantly, the incoming laser beam is not affected by the particle position because the particle is outside the laser cavity. Here, we demonstrate that intracavity nonlinear feedback forces emerge when the particle is placed inside the optical cavity, resulting in orders-of-magnitude higher confinement along the three axes per unit laser intensity on the sample. This scheme allows trapping at very low numerical apertures and reduces the laser intensity to which the particle is exposed by two orders of magnitude compared to a standard 3D optical tweezers. These results are highly relevant for many applications requiring manipulation of samples that are subject to photodamage, such as in biophysics and nanosciences.Item Open Access Optical trapping and manipulation of nanostructures(Nature Publishing Group, 2013) Maragò, O. M.; Jones, P. H.; Gucciardi, P. G.; Volpe, G.; Ferrari, A. C.Optical trapping and manipulation of micrometre-sized particles was first reported in 1970. Since then, it has been successfully implemented in two size ranges: the subnanometre scale, where light-matter mechanical coupling enables cooling of atoms, ions and molecules, and the micrometre scale, where the momentum transfer resulting from light scattering allows manipulation of microscopic objects such as cells. But it has been difficult to apply these techniques to the intermediate-nanoscale-range that includes structures such as quantum dots, nanowires, nanotubes, graphene and two-dimensional crystals, all of crucial importance for nanomaterials-based applications. Recently, however, several new approaches have been developed and demonstrated for trapping plasmonic nanoparticles, semiconductor nanowires and carbon nanostructures. Here we review the state-of-the-art in optical trapping at the nanoscale, with an emphasis on some of the most promising advances, such as controlled manipulation and assembly of individual and multiple nanostructures, force measurement with femtonewton resolution, and biosensors.Item Open Access Optically driven janus microengine with full orbital motion control(American Chemical Society, 2023-09-20) Bronte Ciriza, D.; Callegari, A.; Donato, M. G.; Çiçek, Berk; Magazzù, A.; Kasianiuk, Iryna; Kasyanyuk, Denis; Schmidt, F.; Foti, A.; Gucciardi, P. G.; Volpe, G.; Lanza, M.; Biancofiore, Luca; Maragò, O. M.Microengines have shown promise for a variety of applications in nanotechnology, microfluidics, and nanomedicine, including targeted drug delivery, microscale pumping, and environmental remediation. However, achieving precise control over their dynamics remains a significant challenge. In this study, we introduce a microengine that exploits both optical and thermal effects to achieve a high degree of controllability. We find that in the presence of a strongly focused light beam, a gold-silica Janus particle becomes confined at the stationary point where the optical and thermal forces balance. By using circularly polarized light, we can transfer angular momentum to the particle, breaking the symmetry between the two forces and resulting in a tangential force that drives directed orbital motion. We can simultaneously control the velocity and direction of rotation of the particle changing the ellipticity of the incoming light beam while tuning the radius of the orbit with laser power. Our experimental results are validated using a geometrical optics phenomenological model that considers the optical force, the absorption of optical power, and the resulting heating of the particle. The demonstrated enhanced flexibility in the control of microengines opens up new possibilities for their utilization in a wide range of applications, including microscale transport, sensing, and actuation.