Browsing by Author "Manzano, H."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access The characterization stability and reactivity of synthetic calcium silicate surfaces from first principles(American Chemical Society, 2014) Durgun, Engin; Manzano, H.; Kumar, P. V.; Grossman, J. C.Calcium silicate compounds belong to a complicated class of silicates. Among their many industrial applications, calcium silicates are heavily used as a building material as they constitute the main ingredient in today's cement clinker. We report here an extensive surface analysis of synthetic calcium silicate phases (tricalcium silicate, C3S, and dicalcium silicate, C2S) using first-principles computational methods. We calculate surface energies (γ) for all lower-index orientations and determine the most stable surfaces as well as the equilibrium Wulff structures. We analyze the variation of γ with surface coordination number and find an interesting and unexpected trend where loss of coordination of ionic Ca and O atoms can lower γ. The stability of surface orientations is examined as a function of oxygen partial pressure. Finally, we compute the energy required to remove Ca from different surfaces and find that it is inversely proportional to γ, supporting the energetic preference of extracting atoms from higher energy surfaces. Knowledge of the atomic structure and properties of calcium silicate surfaces is important for understanding and controlling the hydration of such systems.Item Open Access Insight on tricalcium silicate hydration and dissolution mechanism from molecular simulations(American Chemical Society, 2015) Manzano, H.; Durgun, Engin; Arbeloa, I. L.; Grossman, J. C.Hydration of mineral surfaces, a critical process for many technological applications, encompasses multiple coupled chemical reactions and topological changes, challenging both experimental characterization and computational modeling. In this work, we used reactive force field simulations to understand the surface properties, hydration, and dissolution of a model mineral, tricalcium silicate. We show that the computed static quantities, i.e., surface energies and water adsorption energies, do not provide useful insight into predict mineral hydration because they do not account for major structural changes at the interface when dynamic effects are included. Upon hydration, hydrogen atoms from dissociated water molecules penetrate into the crystal, forming a disordered calcium silicate hydrate layer that is similar for most of the surfaces despite wide-ranging static properties. Furthermore, the dynamic picture of hydration reveals the hidden role of surface topology, which can lead to unexpected water tessellation that stabilizes the surface against dissolution.