Browsing by Author "Manguoğlu, M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access The effect of various sparsity structures on parallelism and algorithms to reveal those structures(Birkhauser, 2020) Selvitopi, O.; Acer, S.; Manguoğlu, M.; Aykanat, CevdetStructured sparse matrices can greatly benefit parallel numerical methods in terms of parallel performance and convergence. In this chapter, we present combinatorial models for obtaining several different sparse matrix forms. There are four basic forms we focus on: singly-bordered block-diagonal form, doubly-bordered block-diagonal form, nonempty off-diagonal block minimization, and block diagonal with overlap form. For each of these forms, we first present the form in detail and describe what goals are sought within the form, and then examine the combinatorial models that attain the respective form while targeting the sought goals, and finally explain in which aspects the forms benefit certain parallel numerical methods and their relationship with the models. Our work focuses especially on graph and hypergraph partitioning models in obtaining the mentioned forms. Despite their relatively high preprocessing overhead compared to other heuristics, they have proven to model the given problem more accurately and this overhead can be often amortized due the fact that matrix structure does not change much during a typical numerical simulation. This chapter presents a number of models and their relationship with parallel numerical methods.Item Open Access A novel partitioning method for accelerating the block cimmino algorithm(Society for Industrial and Applied Mathematics Publications, 2018) Torun, S. F.; Manguoğlu, M.; Aykanat, CevdetWe propose a novel block-row partitioning method in order to improve the convergence rate of the block Cimmino algorithm for solving general sparse linear systems of equations. The convergence rate of the block Cimmino algorithm depends on the orthogonality among the block rows obtained by the partitioning method. The proposed method takes numerical orthogonality among block rows into account by proposing a row inner-product graph model of the coefficient matrix. In the graph partitioning formulation defined on this graph model, the partitioning objective of minimizing the cutsize directly corresponds to minimizing the sum of interblock inner products between block rows thus leading to an improvement in the eigenvalue spectrum of the iteration matrix. This in turn leads to a significant reduction in the number of iterations required for convergence. Extensive experiments conducted on a large set of matrices confirm the validity of the proposed method against a state-of-the-art method.