Browsing by Author "Lu, S. P."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer(American Chemical Society, 2014-03-21) Ju, Z. G.; Liu W.; Zhang Z.-H.; Tan S.T.; Ji Y.; Kyaw, Z.; Zhang, X. L.; Lu, S. P.; Zhang, Y. P.; Zhu B.; Hasanov N.; Sun, X. W.; Demir, Hilmi VolkanInGaN/GaN light-emitting diodes (LEDs) with p-(AlGaN/GaN/AlGaN) quantum well structured electron blocking layer (QWEBL) are designed and grown by a metal− organic chemical-vapor deposition (MOCVD) system. The proposed QWEBL LED structure, in which a p-GaN QW layer is inserted in the p-AlGaN electron blocking layer, not only leads to an improved hole injection but also reduces the electron leakage, thus enhancing the radiative recombination rates across the active region. Consequently, the light output power was enhanced by 10% for the QWEBL LED at a current density of 35 A/cm2. The efficiency droop of the optimized device was reduced to 16%. This is much smaller than that of the conventional p-AlGaN electron blocking layer LED, which is 31%.Item Open Access Improved hole distribution in InGaN/GaN light-emitting diodes with graded thickness quantum barriers(AIP Publishing, 2013) Ju, Z. G.; Liu, W.; Zhang, Z. H.; Tan, S. T.; Ji, Y.; Kyaw, Z. B.; Zhang, X. L.; Lu, S. P.; Zhang, Y. P.; Zhu, B.; Hasanov, N.; Sun, X. W.; Demir, Hilmi VolkanInGaN/GaN light-emitting diodes (LEDs) with graded-thickness quantum barriers (GTQB) are designed and grown by metal-organic chemical-vapor deposition. The proposed GTQB structure, in which the barrier thickness decreases from the n-GaN to p-GaN side, was found to lead to an improved uniformity in the hole distribution and thus, radiative recombination rates across the active region. Consequently, the efficiency droop was reduced to 28.4% at a current density of 70 A/cm2, which is much smaller than that of the conventional equal-thickness quantum barriers (ETQB) LED, which is 48.3%. Moreover, the light output power was enhanced from 770 mW for the ETQB LEDs to 870 mW for the GTQB LEDs at 70 A/cm2. © 2013 AIP Publishing LLC.