Browsing by Author "Lox, J. F. L."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Brightly luminescent Cu-Zn-In-S/ZnS Core/shell quantum dots in salt matrices(De Gruyter, 2019) Lox, J. F. L.; Eichler, F.; Erdem, Talha; Adam, M.; Gaponik, N.; Demir, Hilmi Volkan; Lesnyak, V.; Eychmüller, A.In the past decades cadmium-free quantum dots (QDs), among which are quaternary colloidal Cu-Zn-In-S/ZnS (CZIS/ZnS) core/shell nanocrystals (NCs), have attracted great scientific interest. Particularly, their low toxicity and the possibility to tune their photoluminescence (PL) properties by varying the composition in the multicomponent system make them highly attractive for applications in light-emitting diodes (LEDs). Thus, the demands for high quality CZIS/ZnS QDs and methods to process them into bulk materials stimulate investigations of these nanomaterials. Herein, we demonstrate the synthesis of CZIS/ZnS core/shell NCs via a surfactant induced nucleation process, which emit in various colors covering the range from 520 nm to 620 nm possessing high photoluminescence quantum yields (PLQYs) up to 47%. Furthermore, the as synthesized NCs were successfully integrated into two different salt matrices [Na2B4O7 (Borax) and LiCl] using two different approaches. The commonly used incorporation of the NCs into Borax salt led to salt crystals emitting from 540 nm to 600 nm with PLQYs up to 24%. By encapsulating the QDs into LiCl, brightly emitting NCs-in-LiCl powders with the PL covering a range from 520 nm to 650 nm with PLQYs of up to 14% were obtained. As a proof of concept, the fabrication of a color conversion LED using NCs encapsulated into LiCl demonstrated the applicability of the encapsulated NCs.Item Open Access Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot-salt mixed crystals(American Chemical Society, 2015) Adam, M.; Erdem, T.; Stachowski, G.M.; Soran-Erdem Z.; Lox, J. F. L.; Bauer, C.; Poppe, J.; Demir, Hilmi Volkan; Gaponik N.; Eychmüller A.In this work, a model-experimental feedback approach is developed and applied to fabricate high-quality, warm-white light-emitting diodes based on quantum dots (QDs) as color-conversion materials. Owing to their unique chemical and physical properties, QDs offer huge potential for lighting applications. Nevertheless, both emission stability and processability of the QDs are limited upon usage from solution. Incorporating them into a solid ionic matrix overcomes both of these drawbacks, while preserving the initial optical properties. Here borax (Na2B4O7·10H2O) is used as a host matrix because of its lower solubility and thereby reduced ionic strength in water in comparison with NaCl. This guarantees the stability of high-quality CdSe/ZnS QDs in the aqueous phase during crystallization and results in a 3.4 times higher loading amount of QDs within the borax crystals compared to NaCl. All steps from the synthesis via mixed crystal preparation to the warm-white LED preparation are verified by applying the model-experimental feedback, in which experimental data and numerical results provide feedback to each other recursively. These measures are taken to ensure a high luminous efficacy of optical radiation (LER) and a high color rendering index (CRI) of the final device as well as a correlated color temperature (CCT) comparable to an incandescent bulb. By doing so, a warm-white LED with a LER of 341 lm/Wopt, a CCT of 2720 K and a CRI of 91.1 is produced. Finally, we show that the emission stability of the QDs within the borax crystals on LEDs driven at high currents is significantly improved. These findings indicate that the proposed warm-white light-emitting diodes based on QDs-in-borax hold great promise for quality lighting. © 2015 American Chemical Society.