Browsing by Author "Liu, Yuxian"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Elimination of catastrophic optical mirror damage in continuous-wave high-power laser diodes using multi-section waveguides(Optica Publishing Group (formerly OSA), 2022-08-29) Liu, Yuxian; Ebadi, Kaveh; Sünnetçioğlu, Ali Kaan; Gündoğdu, Sinan; Şengül, Serdar; Zhao, Yuliang; Lan, Yu; Zhao, Yongming; Yang, Guowen; Demir, AbdullahOne of the persistent obstacles for high-power laser diodes (LDs) has been the catastrophic optical mirror damage (COMD), which limits the operating power level and lifetime of commercial high-power LDs. The output facet of LD reaches a critical temperature resulting in COMD, which is an irreversible device failure. Here, we fabricate multi-section LDs by tailoring the waveguide structure along the cavity that separates the output facet from the heat-generating lasing region. In this method, the LD waveguide is divided into electrically isolated laser and window sections along the cavity. The laser section is pumped at a high current to achieve high output power, and the window is biased at a low current with negligible heat generation. This design restricts the thermal impact of the laser section on the facet, and the window section allows lossless transport of the laser to the output facet. The lasers were operated continuous-wave up to the maximum achievable power. While standard LDs show COMD failures, the multi-section waveguide LDs are COMD-free. Our technique and results provide a pathway for high-reliability LDs, which would find diverse applications in semiconductor lasers. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.Item Open Access Epitaxially-stacked high efficiency laser diodes near 905 nm(Institute of Electrical and Electronics Engineers Inc., 2022-12-01) Zhao, Yuliang; Yang, Guowen; Zhao, Yongming; Tang, Song; Lan, Yu; Liu, Yuxian; Wang, Zhenfu; Demir, AbdullahWe report on studying tunnel junctions and an optical cavity structure for developing epitaxially-stacked high-efficiency 905 nm high-power laser diodes. The GaAs tunnel junctions were explored via simulations and experiments to realize a high peak current density of 7.7 × 104 A/cm2 and a low specific resistance of 1.5 × 10-5 Ωcm2 with a high n-doping concentration of 6 × 1019 cm-3. Employing a low-loss epitaxial structure design, single-, double-, and triple-cavity structure laser diodes demonstrated power scaling by epitaxial stacking. Triple-cavity laser diodes have a low optical loss (0.42 cm-1) and generate a peak power of 83 W with a short cavity length of 750 μm at a limited current of 30 A. © 2009-2012 IEEE.Item Open Access Multi-section waveguide method for facet temperature reduction and improved reliability of high-power laser diodes(SPIE, 2022-05-20) Ebadi, Kaveh; Liu, Yuxian; Sünnetçioğlu, Ali Kaan; Gündoğdu, Sinan; Şengül, Serdar; Zhao, Yuliang; Lan, Yu; Yang, Guowen; Demir, AbdullahCatastrophic optical mirror damage (COMD) limits the output power and reliability of lasers diodes (LDs). Laser self heating together with facet absorption of output power cause the facet to reach a critical temperature (Tc), resulting in COMD and irreversible device failure. The self-heating of the laser contributes significantly to the facet temperature, but it has not been addressed so far. We implement a multi-section waveguide method where the heat is separated from reaching the output facet by exploiting an electrically isolated window. The laser waveguide is divided into two electrically isolated laser and transparent window sections. The laser section is pumped at high current levels to achieve laser output, and the passive waveguide is biased at low injection currents to obtain a transparent waveguide with negligible heat generation. Using this design, we demonstrate facet temperatures lower than the junction temperature of the laser even at high output power operation. While standard LDs show COMD failures, the multi-section waveguide LDs are COMD-free. Our technique and results provide a pathway for high-reliability LDs, which would find diverse applications in semiconductor lasers.