Browsing by Author "Limpert J."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access 130 nJ 77 fs dissipative soliton fiber laser(OSA, 2010) Baumgartl, M.; Ortaç, Bülend; Lecaplain, C.; Hideur, A.; Limpert J.; Tünnermann, A.We report on ultrashort high-energy pulse generation from an all-normal-dispersion fiber oscillator. The watt-level laser directly emits chirped pulses with a duration of 1ps and 163nJ of pulse energy. These can be compressed to 77fs. © 2010 Optical Society of America.Item Open Access Generation of parabolic bound pulses from a Yb-fiber laser(Optical Society of American (OSA), 2006) Ortaç, B.; Hideur, A.; Brunel, M.; Chédot, C.; Limpert J.; Tünnermann, A.; Ilday F.Ö.We report the observation of self-similar propagation of bound-state pulses in an ytterbium-doped double-clad fiber laser. A bound state of two positively chirped parabolic pulses with 5.4 ps duration separated by 14.9 ps is obtained, with 1.7 nJ of energy per pulse. These pulses are extra-cavity compressed to 100 fs. For higher pumping power and a different setting of the intra-cavity polarization controllers, the laser generates a bound state of three chirped parabolic pulses with different time separations and more than 1.5 nJ energy per pulse. Perturbation of this bound state by decreasing pump power results in the generation of a single pulse and a two-pulse bound state both structures traveling at the same velocity along the cavity. A possible explanation of the zero relative speed by a particular phase relation of the bound states is discussed. ©2006 Optical Society of America.Item Open Access High average and peak power femtosecond large-pitch photonic-crystal-fiber laser(2011) Baumgartl, M.; Jansen F.; Stutzki F.; Jauregui, C.; Ortaç, B.; Limpert J.; Tünnermann, A.We report on the generation of high-average-power and high-peak-power ultrashort pulses from a mode-locked fiber laser operating in the all-normal-dispersion regime. As gain medium, a large-mode-area ytterbium-doped large-pitch photonic-crystal fiber is used. The self-starting fiber laser delivers 27 W of average power at 50:57 MHz repetition rate, resulting in 534 nJ of pulse energy. The laser produces positively chirped 2 ps output pulses, which are compressed down to sub-100 fs, leading to pulse peak powers as high as 3:2 MW. © 2011 Optical Society of America.Item Open Access Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser(2010) Ortaç, B.; Zaviyalov, A.; Nielsen, C.K.; Egorov O.; Iliew, R.; Limpert J.; Lederer F.; Tünnermann, A.We report the experimental generation of two-soliton molecules in an all-polarization-maintaining ytterbium-doped fiber laser operating in the normal dispersion regime. These molecules exhibit an independently evolving phase and are characterized by a regular spectral modulation pattern with a modulation depth of 80% measured as an averaged value. Moreover, the numerical modeling confirms that the limited modulation depth of the spectrum is caused by the evolution of the phase difference between the pulses. © 2010 Optical Society of America.Item Open Access Sub-80 fe dissipative soliton large-mode-area fiber laser(2010) Baumgartl, M.; Ortaç, B.; Lecaplain, C.; Hideur, A.; Limpert J.; Tünnermann, A.We report on high-energy ultrashort pulse generation from an all-normal-dispersion large-mode-area fiber laser by exploiting an efficient combination of nonlinear polarization evolution (NPE) and a semiconductor-based saturable absorber mode-locking mechanism. The watt-level laser directly emits chirped pulses with a duration of 1 ps and 163 nJ of pulse energy. These can be compressed to 77 fs, generating megawatt-level peak power. Intracavity dynamics are discussed by numerical simulation, and the intracavity pulse evolution reveals that NPE plays a key role in pulse shaping. © 2010 Optical Society of America.Item Open Access Ultrashort pulse formation and evolution in mode-locked fiber lasers(2011) Baumgartl, M.; Ortaç, B.; Schreiber, T.; Limpert J.; Tünnermann, A.Passive mode-locking in fiber lasers is investigated by numerical and experimental means. A non-distributed scalar model solving the nonlinear Schrödinger equation is implemented to study the starting behavior and intra-cavity dynamics numerically. Several operation regimes at positive net-cavity dispersion are experimentally accessed and studied in different environmentally stable, linear laser configurations. In particular, pulse formation and evolution in the chirped-pulse regime at highly positive cavity dispersion is discussed. Based on the experimental results a route to highly energetic pulse solutions is shown in numerical simulations. © 2011 Springer-Verlag.