Browsing by Author "Limpert, J."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Compact ultrafast oscillators and high performance ultrafast amplifiers based on ytterbium-doped fibers(Springer Verlag, 2016) Limpert, J.; Eidam, T.; Baumgartl, M.; Röser, F.; Plötner, M.; Ortaç, B.; Nolte, S.; Tünnermann, A.This chapter reviews the fundamentals and achievements of ultrashort pulse generation and amplification in ytterbium-doped fibers. Compact and ultrastable passively mode-locked fiber oscillators represent an ideal seed source for high performance femtosecond fiber amplification systems, which have been scaled towards kW-level average power and pulse energies well above the mJ-level. These laser systems will have significant impact in numerous scientific and industrial applications.Item Open Access Generation of soliton molecules with independently evolving phase in a mode-locked fiber laser(Optical Society of America, 2010) Ortaç, Bülend; Zaviyalov, A.; Nielsen, C.K.; Egorov, O.; Iliew, R.; Limpert, J.; Lederer, F.; Tünnermann, A.We report the experimental generation of two-soliton molecules in an ytterbium-doped fiber laser. These molecules exhibit an independently evolving phase and are characterized by a regular spectral modulation pattern with a modulation depth of 80%. © 2010 Optical Society of America.Item Open Access Impact of dispersion on pulse dynamics in chirped-pulse fiber lasers(Springer, 2012-05) Baumgartl, M.; Ortaç, B.; Limpert, J.; Tünnermann, A.We report on a systematic study of an environmentally stable mode-locked Yb-doped fiber laser operating in the chirped-pulse regime. The linear cavity chirped-pulse fiber laser is constructed with a saturable absorber mirror as nonlinear mode-locking mechanism and a nonlinearity-free transmission-grating-based stretcher/compressor for dispersion management. Mode-locked operation and pulse dynamics from strong normal to strong anomalous total cavity dispersion in the range of +2.5 to -1.6 ps(2) is experimentally studied. Strongly positively chirped pulses from 4.3 ps (0.01 ps(2)) to 39 ps (2.5 ps(2)) are obtained at normal net-cavity dispersion. In the anomalous dispersion regime, the laser generates average soliton feature negatively chirped pulses with autocorrelation pulse durations from 0.8 ps (-0.07 ps(2)) to 3.9 ps (-1.6 ps(2)). The lowered peak power due to the pulse stretching allows one to increase the double pulse threshold. Based on the numerical simulation, different regimes of mode locking are obtained by varying the intra-cavity dispersion, and the characteristics of average soliton, stretched-pulse, wave-breaking-free and chirped-pulse regimes are discussed.