Browsing by Author "Larriba-Pey, J. L."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Generating time-varying road network data using sparse trajectories(IEEE, 2016-12) Eser, Elif; Kocayusufoğlu, F.; Eravci, Bahaedd; Ferhatosmanoglu, Hakan; Larriba-Pey, J. L.While research on time-varying graphs has attracted recent attention, the research community has limited or no access to real datasets to develop effective algorithms and systems. Using noisy and sparse GPS traces from vehicles, we develop a time-varying road network data set where edge weights differ over time. We present our methodology and share this dataset, along with a graph manipulation tool. We estimate the traffic conditions using the sparse GPS data available by characterizing the sparsity issues and assessing the properties of travel sequence data frequency domain. We develop interpolation methods to complete the sparse data into a complete graph dataset with realistic time-varying edge values. We evaluate the performance of time-varying and static shortest path solutions over the generated dynamic road network. The shortest paths using the dynamic graph produce very different results than the static version. We provide an independent Java API and a graph database to analyze and manipulate the generated time-varying graph data easily, not requiring any knowledge about the inners of the graph database system. We expect our solution to support researchers to pursue problems of time-varying graphs in terms of theoretical, algorithmic, and systems aspects. The data and Java API are available at: http://elif.eser.bilkent.edu.tr/roadnetwork. © 2016 IEEE.Item Open Access Understanding and predicting trends in urban freight transport(IEEE, 2017-05-06) Mrazovic, P.; Eravci, Bahaeddin; Larriba-Pey, J. L.; Ferhatosmanoğlu, Hakan; Matskin, M.Among different components of urban mobility, urban freight transport is usually considered as the least sustainable. Limited traffic infrastructures and increasing demands in dense urban regions lead to frequent delivery runs with smaller freight vehicles. This increases the traffic in urban areas and has negative impacts upon the quality of life in urban populations. Data driven optimizations are essential to better utilize existing urban transport infrastructures and to reduce the negative effects of freight deliveries for the cities. However, there is limited work and data driven research on urban delivery areas and freight transportation networks. In this paper, we collect and analyse data on urban freight deliveries and parking areas towards an optimized urban freight transportation system. Using a new check-in based mobile parking system for freight vehicles, we aim to understand and optimize freight distribution processes. We explore the relationship between areas' availability patterns and underlying traffic behaviour in order to understand the trends in urban freight transport. By applying the detected patterns we predict the availabilities of loading/unloading areas, and thus open up new possibilities for delivery route planning and better managing of freight transport infrastructures. © 2017 IEEE.