Browsing by Author "Kurt, M. N."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Maximization of average number of correctly received symbols over multiple channels in the presence of idle periods(Elsevier Inc., 2016) Keskin, M. F.; Kurt, M. N.; Tutay, M. E.; Gezici, Sinan; Arıkan, OrhanIn this study, optimal channel switching (time sharing) strategies are investigated under average power and cost constraints for maximizing the average number of correctly received symbols between a transmitter and a receiver that are connected via multiple flat-fading channels with additive Gaussian noise. The optimal strategy is shown to correspond to channel switching either among at most three different channels with full channel utilization (i.e., no idle periods), or between at most two different channels with partial channel utilization. Also, it is stated that the optimal solution must operate at the maximum average power and the maximum average cost, which facilitates low-complexity approaches for obtaining the optimal strategy. For two-channel strategies, an upper bound is derived, in terms of the parameters of the employed channels, on the ratio between the optimal power levels. In addition, theoretical results are derived for characterizing the optimal solution for channel switching between two channels, and for comparing performance of single channel strategies. Sufficient conditions that depend solely on the systems parameters are obtained for specifying when partial channel utilization cannot be optimal. Furthermore, the proposed optimal channel switching problem is investigated for logarithmic cost functions, and various theoretical results are obtained related to the optimal strategy. Numerical examples are presented to illustrate the validity of the theoretical results.Item Open Access Optimal jammer placement in wireless localization systems(Institute of Electrical and Electronics Engineers Inc., 2016) Gezici, Sinan; Bayram, S.; Kurt, M. N.; Gholami, M. R.In this study, the optimal jammer placement problem is proposed and analyzed for wireless localization systems. In particular, the optimal location of a jammer node is obtained by maximizing the minimum of the Cramér-Rao lower bounds (CRLBs) for a number of target nodes under location related constraints for the jammer node. For scenarios with more than two target nodes, theoretical results are derived to specify conditions under which the jammer node is located as close to a certain target node as possible, or the optimal location of the jammer node is determined by two of the target nodes. Also, explicit expressions are provided for the optimal location of the jammer node in the presence of two target nodes. In addition, in the absence of distance constraints for the jammer node, it is proved, for scenarios with more than two target nodes, that the optimal jammer location lies on the convex hull formed by the locations of the target nodes and is determined by two or three of the target nodes, which have equalized CRLBs. Numerical examples are presented to provide illustrations of the theoretical results in different scenarios. © 1991-2012 IEEE.