Browsing by Author "Kriege, J."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Compact representation of solution vectors in Kronecker-based Markovian analysis(Springer, 2016-08) Buchholz, P.; Dayar, Tuğrul; Kriege, J.; Orhan, M. CanIt is well known that the infinitesimal generator underlying a multi-dimensional Markov chain with a relatively large reachable state space can be represented compactly on a computer in the form of a block matrix in which each nonzero block is expressed as a sum of Kronecker products of smaller matrices. Nevertheless, solution vectors used in the analysis of such Kronecker-based Markovian representations still require memory proportional to the size of the reachable state space, and this becomes a bigger problem as the number of dimensions increases. The current paper shows that it is possible to use the hierarchical Tucker decomposition (HTD) to store the solution vectors during Kroneckerbased Markovian analysis relatively compactly and still carry out the basic operation of vector-matrix multiplication in Kronecker form relatively efficiently. Numerical experiments on two different problems of varying sizes indicate that larger memory savings are obtained with the HTD approach as the number of dimensions increases. © Springer International Publishing Switzerland 2016.Item Open Access On compact solution vectors in Kronecker-based Markovian analysis(Elsevier, 2017) Buchholz, P.; Dayar T.; Kriege, J.; Orhan, M. C.State based analysis of stochastic models for performance and dependability often requires the computation of the stationary distribution of a multidimensional continuous-time Markov chain (CTMC). The infinitesimal generator underlying a multidimensional CTMC with a large reachable state space can be represented compactly in the form of a block matrix in which each nonzero block is expressed as a sum of Kronecker products of smaller matrices. However, solution vectors used in the analysis of such Kronecker-based Markovian representations require memory proportional to the size of the reachable state space. This implies that memory allocated to solution vectors becomes a bottleneck as the size of the reachable state space increases. Here, it is shown that the hierarchical Tucker decomposition (HTD) can be used with adaptive truncation strategies to store the solution vectors during Kronecker-based Markovian analysis compactly and still carry out the basic operations including vector–matrix multiplication in Kronecker form within Power, Jacobi, and Generalized Minimal Residual methods. Numerical experiments on multidimensional problems of varying sizes indicate that larger memory savings are obtained with the HTD approach as the number of dimensions increases. © 2017 Elsevier B.V.