Browsing by Author "Koren, S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Author Correction: A robust benchmark for detection of germline large deletions and insertions(Nature Research, 2020) Zook, J. M.; Hansen, N. F.; Olson, N. D.; Chapman, L.; Mullikin, J. C.; Xiao, C.; Sherry, S.; Koren, S.; Phillippy, A. M.; Boutros, P. C.; Sahraeian, S. M. E.; Huang, V.; Rouette, A.; Alexander, N.; Mason, C. E.; Hajirasouliha, I.; Ricketts, C.; Lee, J.; Tearle, R.; Fiddes, I. T.; Barrio, A. M.; Wala, J.; Carroll, A.; Ghaffari, N.; Rodriguez, O. L.; Bashir, A.; Jackman, S.; Farrell, J. J.; Wenger, A. M.; Alkan, Can; Söylev, A.; Schatz, M. C.; Garg, S.; Church, G.; Marschall, T.; Chen, K.; Fan, X.; English, A. C.; Rosenfeld, J. A.; Zhou, W.; Mills, R. E.; Sage, J. M.; Davis, J. R.; Kaiser, M. D.; Oliver, J. S.; Catalano, A. P.; Chaisson, M. J. P.; Spies, N.; Sedlazeck, F. J.; Salit, M.New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution and comprehensiveness. To help translate these methods to routine research and clinical practice, we developed a sequence-resolved benchmark set for identification of both false-negative and false-positive germline large insertions and deletions. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle Consortium integrated 19 sequence-resolved variant calling methods from diverse technologies. The final benchmark set contains 12,745 isolated, sequence-resolved insertion (7,281) and deletion (5,464) calls ≥50 base pairs (bp). The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.51 Gbp and 5,262 insertions and 4,095 deletions supported by ≥1 diploid assembly. We demonstrate that the benchmark set reliably identifies false negatives and false positives in high-quality SV callsets from short-, linked- and long-read sequencing and optical mapping.Item Open Access The bonobo genome compared with the chimpanzee and human genomes(2012) Prüfer, K.; Munch, K.; Hellmann I.; Akagi, K.; Miller J.R.; Walenz, B.; Koren, S.; Sutton G.; Kodira, C.; Winer, R.; Knight J.R.; Mullikin J.C.; Meader, S.J.; Ponting, C.P.; Lunter G.; Higashino, S.; Hobolth, A.; Dutheil J.; Karakoç, E.; Alkan, C.; Sajjadian, S.; Catacchio, C.R.; Ventura, M.; Marques-Bonet, T.; Eichler, E.E.; André, C.; Atencia, R.; Mugisha L.; Junhold J.; Patterson, N.; Siebauer, M.; Good J.M.; Fischer, A.; Ptak, S.E.; Lachmann, M.; Symer, D.E.; Mailund, T.; Schierup, M.H.; Andrés, A.M.; Kelso J.; Pääbo, S.Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other. © 2012 Macmillan Publishers Limited. All rights reserved.