Browsing by Author "Kim, J."
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Accelerating genome analysis: a primer on an ongoing journey(IEEE, 2020) Alser, M.; Zülal, Bingöl; Cali, D. S.; Kim, J.; Ghose, S.; Alkan, Can; Mutlu, OnurGenome analysis fundamentally starts with a process known as read mapping, where sequenced fragments of an organism's genome are compared against a reference genome. Read mapping is currently a major bottleneck in the entire genome analysis pipeline, because state-of-the-art genome sequencing technologies are able to sequence a genome much faster than the computational techniques employed to analyze the genome. We describe the ongoing journey in significantly improving the performance of read mapping. We explain state-of-the-art algorithmic methods and hardware-based acceleration approaches. Algorithmic approaches exploit the structure of the genome as well as the structure of the underlying hardware. Hardware-based acceleration approaches exploit specialized microarchitectures or various execution paradigms (e.g., processing inside or near memory). We conclude with the challenges of adopting these hardware-accelerated read mappers.Item Open Access Electric-field-induced reversible phase transitions in a spontaneously ion-Intercalated 2D metal oxide(American Chemical Society, 2021-05-12) Rasouli, Hamid Reza; Kim, J.; Mehmood, Naveed; Sheraz, Ali; Jo, M. K.; Song, Seungwoo; Kang, K.; Kasırga, Talip SerkanElectric field driven reversible phase transitions in two-dimensional (2D) materials are appealing for their potential in switching applications. Here, we introduce potassium intercalated MnO2 as an exemplary case. We demonstrate the synthesis of large-area single-crystal layered MnO2 via chemical vapor deposition as thin as 5 nm. These crystals are spontaneously intercalated by potassium ions during the synthesis. We showed that the charge transport in 2D K-MnO2 is dominated by motion of hydrated potassium ions in the interlayer space. Under a few volts bias, separation of potassium and the structural water leads to formation of different phases at the opposite terminals, and at larger biases K-MnO2 crystals exhibit reversible layered-to-spinel phase transition. These phase transitions are accompanied by electrical and optical changes in the material. We used the electric field driven ionic motion in K-MnO2 based devices to demonstrate the memristive capabilities of two terminal devices.Item Open Access Electrochemical deposition of large-sized mesoporous nickel films using polymeric micelles(Royal Society of Chemistry, 2018) Baba, D.; Kim, J.; Henzie, J.; Li, C.; Jiang, B.; Dağ, Ömer; Yamauchi, Y.; Asahi, T.Stable mesoporous nickel (Ni) films can be prepared using polystyrene-b-poly-(oxyethylene) (PS-b-PEO) micelles as sacrificial templates. In this method, positively charged Ni precursors form hydrogen bonds with the PEO segments of the micelles, which are then co-electrodeposited on the surface of a working electrode. Changing the applied voltage during electrodeposition modifies the deposition rate and ultimately controls the architecture of the mesoporous Ni film.Item Open Access Global air quality and COVID-19 pandemic: do we breathe cleaner air?(Taiwan Association for Aerosol Research,Taiwan Qijiao Yanjiu Xuehui, 2021-02-08) Torkmahalleh, M. A.; Akhmetvaliyeva, Z.; Omran, A. D.; Omran, F. D.; Kazemitabar, M.; Naseri, M.; Motahareh, N.; Hamed, S.; Malekipirbazari, Milad; Adotey, E. K.; Soudabeh, G.; Neda, E.; Sabanov, S.; Alastuey, A.; Andrade, M. F.; Buonanno, G.; Carbone, S.; Cárdenas-Fuentes, D. E.; Cassee, F. R; Dai, Q.; Henríquez, A.; Hopke, P. K.; Keronen, P.; Khwaja, H. A.; Kim, J.; Kulmala, M.; Kumar, P.; Kushta, J.; Kuula, J.; Massagué, J.; Mitchell, T.; Mooibroek, D.; Morawska, L.; Niemi, J. V.; Ngagine, S. H.; Norman, M.; Oyama, B.; Oyola, P.; Öztürk, F.; Petäjä, T.; Querol, X.; Rashidi, Y.; Reyes, F.; Ross-Jones, M.; Salthammer, T.; Savvides, C.; Stabile, L.; Sjöberg, K.; Söderlund, K.; Raman, R. S.; Timonen, H.; Umezawa, M.; Viana, M.; Xie, S.The global spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has challenged most countries worldwide. It was quickly recognized that reduced activities (lockdowns) during the Coronavirus Disease of 2019 (COVID-19) pandemic produced major changes in air quality. Our objective was to assess the impacts of COVID-19 lockdowns on groundlevel PM2.5, NO2, and O3 concentrations on a global scale. We obtained data from 34 countries, 141 cities, and 458 air monitoring stations on 5 continents (few data from Africa). On a global average basis, a 34.0% reduction in NO2 concentration and a 15.0% reduction in PM2.5 were estimated during the strict lockdown period (until April 30, 2020). Global average O3 concentration increased by 86.0% during this same period. Individual country and continent-wise comparisons have been made between lockdown and business-as-usual periods. Universally, NO2 was the pollutant most affected by the COVID-19 pandemic. These effects were likely because its emissions were from sources that were typically restricted (i.e., surface traffic and non-essential industries) by the lockdowns and its short lifetime in the atmosphere. Our results indicate that lockdown measures and resulting reduced emissions reduced exposure to most harmful pollutants and could provide global-scale health benefits. However, the increased O3 may have substantially reduced those benefits and more detailed health assessments are required to accurately quantify the health gains. At the same, these restrictions were obtained at substantial economic costs and with other health issues (depression, suicide, spousal abuse, drug overdoses, etc.). Thus, any similar reductions in air pollution would need to be obtained without these extensive economic and other consequences produced by the imposed activity reductions.Item Open Access An integrated femtosecond timing distribution system for XFELS(Massachusetts Institute of Technology, 2006) Kim, J.; Burnham, J.; Chen, J.; Kartner, F. X.; İlday, Fatih Ömer; Ludwig, F.; Schlarb, H.; Winter, A.; Ferianis, M.; Cheever, D.Tightly synchronized lasers and RF-systems with timing jitter in the few femtoseconds range are necessary sub-systems for future X-ray free electron laser facilities. In this paper, we present an optical-microwave phase detector that is capable of extracting an RF-signal from an optical pulse stream without amplitude-to-phase conversion. Extraction of a microwave signal with 3 fs timing jitter (from 1 Hz to 10 MHz) from an optical pulse stream is demonstrated. Scaling of this component to subfemtosecond resolution is discussed. Together with low noise mode-locked lasers, timing-stabilized optical fiber links and compact optical cross-correlators, a flexible femtosecond timing distribution system with potentially sub-10 fs precision over distances of a few kilometers can be constructed. Experimental results on both synchronized RF and laser sources will be presented.Item Open Access Lyotropic liquid crystalline mesophases made of salt-acid-surfactant systems for the synthesis of novel mesoporous lithium metal phosphates(Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, 2019) Uzunok, Işıl; Kim, J.; Çolak, Tuluhan O.; Kim, D.; Kim, H.; Kim, M.; Yamauchi, Y.; Dağ, ÖmerMesoporous lithium metal phosphates are an important class of materials for the development of lithium ion batteries. However, there is a limited success in producing mesoporous lithium metal phosphates in the literature. Here, a lyotropic liquid crystalline (LLC) templating method was employed to synthesize the first examples of LiMPO4 (LMP) of Mn(II), Co(II), and Ni(II). A homogeneous aqueous solution of lithium and transition metal nitrate salts, phosphoric acid (PA), and surfactant (P123) can be spin coated or drop‐cast coated over glass slides to form the LLC mesophases which can be calcined into mesoporous amorphous LMPs (MA‐LMPs). The metal salts of Mn(II), Co(II) and Ni(II) produce MA‐LMPs that crystallize into olivine structures by heat treatment of the LLC mesophase. The Fe(II) compound undergoes air oxidation. Therefore, both Fe(II) and Fe(III) precursors produce a crystalline Li3Fe2(PO4)3 phase at over 400 °C. The MA‐LMPs show no reactivity towards lithium, however the crystalline iron compound exhibits electrochemical reactivity with lithium and a good electrochemical energy storage ability using a lithium‐ion battery test.Item Open Access Oncogenic signaling pathways in the Cancer Genome Atlas(Cell Press, 2018) Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W. K.; Luna, A.; La, K. C.; Dimitriadoy, S.; Liu, D. L.; Kantheti, H. S.; Saghafinia, S.; Chakravarty, D.; Daian, F.; Gao, Q.; Bailey, M. H.; Liang, W. -W.; Foltz, S. M.; Shmulevich, I.; Ding, L.; Heins, Z.; Ochoa, A.; Gross, B.; Gao, J.; Zhang, H.; Kundra, R.; Kandoth, C.; Bahceci, I.; Dervishi, L.; Doğrusöz, Uğur; Zhou, W.; Shen, H.; Laird, P. W.; Way, G. P.; Greene, C. S.; Liang, H.; Xiao, Y.; Wang, C.; Iavarone, A.; Berger, A. H.; Bivona, T. G.; Lazar, A. J.; Hammer, G. D.; Giordano, T.; Kwong, L. N.; McArthur, G.; Huang, C.; Tward, A. D.; Frederick, M. J.; McCormick, F.; Meyerson, M.; Caesar-Johnson, S. J.; Demchok, J. A.; Felau, I.; Kasapi, M.; Ferguson, M. L.; Hutter, C. M.; Sofia, H. J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J. C.; Zhang, J. J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D. I.; Kim, J.; Lawrence, M. S.; Lin, P.; Meier, S.; Noble, M. S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B. M.; Hegde, A. M.; Ju, Z.; Kanchi, R. S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu W.; Lu, Y.; Mills, G. B.; Ng, K. -S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J. N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W. K.; de, Bruijn, I.; Gao, J.; Gross, B. E.; Heins, Z. J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M. G.; Ochoa, A.; Phillips, S. M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S. O.; Sun, Y.; Taylor, B. S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J. M.; Wong, C. K.; Yau, C.; Hayes, D. N.; Parker, J. S.; Wilkerson, M. D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S. J. M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M. A.; Mayo, M.; Moore, R. A.; Mungall, A. J.; Mungall, K.; Robertson, A. G.; Sadeghi, S.; Schein, J. E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A. C.; Beroukhim, R.; Cherniack, A. D.; Cibulskis, C.; Gabriel, S. B.; Gao, G. F.; Ha, G.; Meyerson, M.; Schumacher, S. E.; Shih, J.; Kucherlapati, M. H.; Kucherlapati, R. S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M. S.; Lai, P. H.; Maglinte, D. T.; Van, Den, Berg, D. J.; Weisenberger, D. J.; Auman, J. T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K. A.; Hoyle, A. P.; Jefferys, S. R.; Jones, C. D.; Meng, S.; Mieczkowski, P. A.; Mose, L. E.; Perou, A. H.; Perou, C. M.; Roach, J.; Shi, Y.; Simons, J. V.; Skelly, T.; Soloway, M. G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P. W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C. J.; Dinh, H.; Doddapaneni, H.; Donehower, L. A.; Drummond, J.; Gibbs, R. A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D. A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E. L.; Bailey, M.; Cordes, M. G.; Ding, L.; Fronick, C. C.; Fulton, L. A.; Fulton, R. S.; Kandoth, C.; Mardis, E. R.; McLellan, M. D.; Miller, C. A.; Schmidt, H. K.; Wilson, R. K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J. M.; Gerken, M.; Leraas, K. M.; Lichtenberg, T. M.; Ramirez, N. C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A. L.; de, Carvalho, A. C.; Fregnani, J. H.; Longatto-Filho, A.; Reis, R. M.; Scapulatempo-Neto, C.; Silveira, H. C. S.; Vidal, D. O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M. L.; Castro, P. D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E. R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C. P.; Malykh, A.; Barnholtz-Sloan, J. S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q. T.; Shimmel, K.; Wolinsky, Y.; Sloan, A. E.; De, Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B. Y.; Hagedorn, C. H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L. A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R. J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S. M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M. -H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D. J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J. J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D. M.; Sica, G.; Van, Meir, E. G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van, Kessel, K. E.; Zwarthoff, E. C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W. J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De, Rienzo, A.; Richards, W. G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A. L.; Van, Bang, N.; Hanh, P. T.; Phu, B. D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P. R.; Martignetti, J. A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K. J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A. H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J. A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J. -P.; Kopp, K.; Moser, C.; Nagorney, D.; O'Brien, D.; O'Neill, B. P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R. H.; Torbenson, M.; Yang, J. D.; Zhang, L.; Brimo, F.; Ajani, J. A.; Gonzalez, A. M. A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A. J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T. A.; Ghossein, R.; Gopalan, A.; Levine, D. A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N. V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J. -W.; Hung, N. P.; Kebebew, E.; Linehan, W. M.; Metwalli, A. R.; Pacak, K.; Pinto, P. A.; Schiffman, M.; Schmidt, L. S.; Vocke, C. D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D. M.; Rintoul, R. C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de, Krijger, R.; Gimenez-Roqueplo, A. -P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N. A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J. A.; Liptay, M. J.; Pool, M.; Seder, C. W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M. C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K. -F.; Janssen, K. -P.; Slotta-Huspenina, J.; Abdel-Rahman, M. H.; Aziz, D.; Bell, S.; Cebulla, C. M.; Davis, A.; Duell, R.; Elder, J. B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N. L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W. E.; Sexton, K. C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S. L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P. R.; Chan, J. M.; Disaia, P.; Glenn, P.; Kelley, R. K.; Landen, C. N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von, Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A. K.; Madan, R.; Rosenthal, H. G.; Adebamowo, C.; Adebamowo, S. N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A. -M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E. M. M.; Quintero-Aguilo, M.; Carlotti, C. G.; Jr.; Dos, Santos, J. S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C. S.; Godwin, E. M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K. M.; Yang, I.; Korst, R.; Rathmell, W. K.; Fantacone-Campbell, J. L.; Hooke, J. A.; Kovatich, A. J.; Shriver, C. D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van, Tine, B.; Westervelt, P.; Rubin, M. A.; Lee, J. I.; Aredes, N. D.; Mariamidze, A.; Van, Allen, E. M.; Cherniack, A. D.; Ciriello, G.; Sander, C.; Schultz, N.; The, Cancer, Genome, Atlas, Research, Network.tifGenetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy. An integrated analysis of genetic alterations in 10 signaling pathways in >9,000 tumors profiled by TCGA highlights significant representation of individual and co-occurring actionable alterations in these pathways, suggesting opportunities for targeted and combination therapies.Item Open Access SeGraM: A universal hardware accelerator for genomic sequence-to-graph and sequence-to-sequence mapping(Association for Computing Machinery, 2020-06-11) Cali, D.Ş; Kanellopoulos, K.; Lindegger, J.; Bingöl, Zülal; Kalsi, G.S.; Zuo, Z.; Fırtına, Can; Cavlak, M.B.; Kim, J.; Ghiasi, N.M.; Singh, G.; Gómez-Luna, J.; Almadhoun Alserr, N.; Alser, M.; Subramoney, S.; Alkan, Can; Ghose, S.; Mutlu, O.A critical step of genome sequence analysis is the mapping of sequenced DNA fragments (i.e., reads) collected from an individual to a known linear reference genome sequence (i.e., sequence-to-sequence mapping). Recent works replace the linear reference sequence with a graph-based representation of the reference genome, which captures the genetic variations and diversity across many individuals in a population. Mapping reads to the graph-based reference genome (i.e., sequence-to-graph mapping) results in notable quality improvements in genome analysis. Unfortunately, while sequence-to-sequence mapping is well studied with many available tools and accelerators, sequence-to-graph mapping is a more difficult computational problem, with a much smaller number of practical software tools currently available. We analyze two state-of-the-art sequence-to-graph mapping tools and reveal four key issues. We find that there is a pressing need to have a specialized, high-performance, scalable, and low-cost algorithm/hardware co-design that alleviates bottlenecks in both the seeding and alignment steps of sequence-to-graph mapping. Since sequence-to-sequence mapping can be treated as a special case of sequence-to-graph mapping, we aim to design an accelerator that is efficient for both linear and graph-based read mapping. To this end, we propose SeGraM, a universal algorithm/hardware co-designed genomic mapping accelerator that can effectively and efficiently support both sequence-to-graph mapping and sequence-to-sequence mapping, for both short and long reads. To our knowledge, SeGraM is the first algorithm/hardware co-design for accelerating sequence-to-graph mapping. SeGraM consists of two main components: (1) MinSeed, the first minimizer-based seeding accelerator, which finds the candidate locations in a given genome graph; and (2) BitAlign, the first bitvector-based sequence-to-graph alignment accelerator, which performs alignment between a given read and the subgraph identified by MinSeed. We couple SeGraM with high-bandwidth memory to exploit low latency and highly-parallel memory access, which alleviates the memory bottleneck. We demonstrate that SeGraM provides significant improvements for multiple steps of the sequence-to-graph (i.e., S2G) and sequence-to-sequence (i.e., S2S) mapping pipelines. First, SeGraM outperforms state-of-the-art S2G mapping tools by 5.9×/3.9× and 106×/- 742× for long and short reads, respectively, while reducing power consumption by 4.1×/4.4× and 3.0×/3.2×. Second, BitAlign outperforms a state-of-the-art S2G alignment tool by 41×-539× and three S2S alignment accelerators by 1.2×-4.8×. We conclude that SeGraM is a high-performance and low-cost universal genomics mapping accelerator that efficiently supports both sequence-to-graph and sequence-to-sequence mapping pipelines.Item Open Access Standing mesochannels: mesoporous PdCu films with vertically aligned mesochannels from nonionic micellar solutions(American Chemical Society, 2018) Iqbal, M.; Kim, J.; Yuliarto, B.; Jiang B.; Li C.; Dağ, Ömer; Malgras, V.; Yamauchi, Y.Mesoporous bimetallic palladium (Pd) alloy films with mesochannels perpendicularly aligned to the substrate are expected to show superior electrocatalytic activity and stability. The perpendicular mesochannels allow small molecules to efficiently access the active sites located not only at the surface but also within the film because of low diffusion resistance. When compared to pure Pd films, alloying with a secondary metal such as copper (Cu) is cost-effective and promotes resistance against adventitious poisoning through intermediate reactions known to impair the electrocatalytic performance. Here, we report the synthesis of mesoporous PdCu films by electrochemical deposition in nonionic micellar solutions. The mesoporous structures are vertically aligned on the substrate, and the final content of Pd and Cu can be adjusted by tuning the initial precursor molar ratio in the electrolyte solution.