Browsing by Author "Kilinc, M. C."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Effect of the passivation layer on the noise characteristics of mid-wave-infrared InAs / GaSb superlattice photodiodes(IEEE, 2012) Tansel, T.; Kutluer, K.; Salihoglu, Ö.; Aydınlı, Atilla; Aslan, B.; Arikan, B.; Kilinc, M. C.; Ergun, Y.; Serincan, U.; Turan, R.The authors describe the noise characterization of a mid-wavelength- infrared (MWIR) photodiode based on indium arsenide and gallium antimonide (InAs/GaSb) superlattice (SL), addressing the influence of different passivation layers applied to the surface of the device. The MWIR InAs/GaSb SL design structure is based on p-i-n configuration grown by the molecular beam epitaxy on a (001) n-GaSb substrate. The SiO 2-passivated SL photodiodes demonstrated a Schottky-limited noise up to a bias voltage of -0.1 V where the measured peak responsivity is 1.37 A/W with a cut-off wavelength of 4.9 μm and the specific detectivity as high as 1.23 × 10 12 cm. Hz 1/2 W , demonstrating the high quality of the fabricated MWIR SL photodiodes. The noise measurements exhibited a frequency-dependent plateau (i.e., 1/f noise) for unpassivated and Si 3N 4-passivated samples, whereas 1/f-type noise suppression (i.e., frequency-independent plateau) with a noise current reduction at about 30 Hz of more than one order of magnitude was observed for the SiO 2-passivated ones.Item Open Access Neuroactive peptide nanofibers for regeneration of spinal cord after injury(Wiley-VCH Verlag GmbH & Co. KGaA, 2020-10-11) Sever-Bahçekapılı, Melike; Yılmaz, Canelif; Demirel, A.; Kilinc, M. C.; Dogan, I.; Caglar, Y. S.; Guler, M. O.; Tekinay, Ayşe BegümThe highly complex nature of spinal cord injuries (SCIs) requires design of novel biomaterials that can stimulate cellular regeneration and functional recovery. Promising SCI treatments use biomaterial scaffolds, which provide bioactive cues to the cells in order to trigger neural regeneration in the spinal cord. In this work, the use of peptide nanofibers is demonstrated, presenting protein binding and cellular adhesion epitopes in a rat model of SCI. The self-assembling peptide molecules are designed to form nanofibers, which display heparan sulfate mimetic and laminin mimetic epitopes to the cells in the spinal cord. These neuroactive nanofibers are found to support adhesion and viability of dorsal root ganglion neurons as well as neurite outgrowth in vitro and enhance tissue integrity after 6 weeks of injury in vivo. Treatment with the peptide nanofiber scaffolds also show significant behavioral improvement. These results demonstrate that it is possible to facilitate regeneration especially in the white matter of the spinal cord, which is usually damaged during the accidents using bioactive 3D nanostructures displaying high densities of laminin and heparan sulfate-mimetic epitopes on their surfaces.