Browsing by Author "Keskus, Ayşe Gökçe"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Development of a novel zebrafish xenograft model in ache mutants using liver cancer cell lines(Nature Publishing Group, 2018) Avcı, M. Ender; Keskus, Ayşe Gökçe; Targen, Seniye; Işılak, M. Efe; Öztürk, Mehmet; Çetin-Atalay, Rengül; Adams, Michelle M.; Konu, ÖzlenAcetylcholinesterase (AChE), an enzyme responsible for degradation of acetylcholine, has been identified as a prognostic marker in liver cancer. Although in vivo Ache tumorigenicity assays in mouse are present, no established liver cancer xenograft model in zebrafish using an ache mutant background exists. Herein, we developed an embryonic zebrafish xenograft model using epithelial (Hep3B) and mesenchymal (SKHep1) liver cancer cell lines in wild-type and ache sb55 sibling mutant larvae after characterization of cholinesterase expression and activity in cell lines and zebrafish larvae. The comparison of fluorescent signal reflecting tumor size at 3-days post-injection (dpi) revealed an enhanced tumorigenic potential and a reduced migration capacity in cancer cells injected into homozygous ache sb55 mutants when compared with the wild-type. Increased tumor load was confirmed using an ALU based tumor DNA quantification method modified for use in genotyped xenotransplanted zebrafish embryos. Confocal microscopy using the Huh7 cells stably expressing GFP helped identify the distribution of tumor cells in larvae. Our results imply that acetylcholine accumulation in the microenvironment directly or indirectly supports tumor growth in liver cancer. Use of this model system for drug screening studies holds potential in discovering new cholinergic targets for treatment of liver cancers.Item Open Access Increased SGK1 activity potentiates mineralocorticoid/NaCl-induced kidney injury(American Physiological Society, 2021-04-08) Sierra-Ramos, Catalina; Velazquez-Garcia, Silvia; Keskus, Ayşe Gökçe; Vastola-Mascolo, Arianna; Rodríguez-Rodríguez, Ana E.; Luis-Lima, Sergio; Hernández, Guadalberto; Navarro-González, Juan F.; Porrini, Esteban; Konu, Özlen; Alvarez de la Rosa, DiegoSerum and glucocorticoid-regulated kinase 1 (SGK1) stimulates aldosterone-dependent renal Na reabsorption and modulates blood pressure. In addition, genetic ablation or pharmacological inhibition of SGK1 limits the development of kidney inflammation and fibrosis in response to excess mineralocorticoid signaling. In this work, we tested the hypothesis that a systemic increase in SGK1 activity would potentiate mineralocorticoid/salt-induced hypertension and kidney injury. To that end, we used a transgenic mouse model with increased SGK1 activity. Mineralocorticoid/salt-induced hypertension and kidney damage was induced by unilateral nephrectomy and treatment with deoxycorticosterone acetate and NaCl in the drinking water for 6 wk. Our results show that although SGK1 activation did not induce significantly higher blood pressure, it produced a mild increase in glomerular filtration rate, increased albuminuria, and exacerbated glomerular hypertrophy and fibrosis. Transcriptomic analysis showed that extracellular matrix-and immune response-related terms were enriched in the downregulated and upregulated genes, respectively, in transgenic mice. In conclusion, we propose that systemically increased SGK1 activity is a risk factor for the development of mineralocorticoid-dependent kidney injury in the context of low renal mass and independently of blood pressure. NEW and NOTEWORTHY Increased activity of the protein kinase serum and glucocorticoid-regulated kinase 1 may be a risk factor for accelerated renal damage. Serum and glucocorticoid-regulated kinase 1 expression could be a marker for the rapid progression toward chronic kidney disease and a potential therapeutic target to slow down the process. © 2021 American Physiological Society. All rights reserved.