Browsing by Author "Kelestemur Y."
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item Open Access Alloyed heterostructures of CdSexS1-x nanoplatelets with highly tunable optical gain performance(American Chemical Society, 2017) Kelestemur Y.; Dede, D.; Gungor K.; Usanmaz, C. F.; Erdem, O.; Demir, Hilmi VolkanHere, we designed and synthesized alloyed heterostructures of CdSexS1-x nanoplatelets (NPLs) using CdS coating in the lateral and vertical directions for the achievement of highly tunable optical gain performance. By using homogeneously alloyed CdSexS1-x core NPLs as a seed, we prepared CdSexS1-x/CdS core/crown NPLs, where CdS crown region is extended only in the lateral direction. With the sidewall passivation around inner CdSexS1-x cores, we achieved enhanced photoluminescence quantum yield (PL-QY) (reaching 60%), together with increased absorption cross-section and improved stability without changing the emission spectrum of CdSexS1-x alloyed core NPLs. In addition, we further extended the spectral tunability of these solution-processed NPLs with the synthesis of CdSexS1-x/CdS core/shell NPLs. Depending on the sulfur composition of the CdSexS1-x core and thickness of the CdS shell, CdSexS1-x/CdS core/shell NPLs possessed highly tunable emission characteristics within the spectral range of 560-650 nm. Finally, we studied the optical gain performances of different heterostructures of CdSexS1-x alloyed NPLs offering great advantages, including reduced reabsorption and spectrally tunable optical gain range. Despite their decreased PL-QY and reduced absorption cross-section upon increasing the sulfur composition, CdSexS1-x based NPLs exhibit highly tunable amplified spontaneous emission performance together with low gain thresholds down to ∼53 μJ/cm2.Item Open Access CdSe/CdSe1-xTex core/crown heteronanoplatelets: tuning the excitonic properties without changing the thickness(American Chemical Society, 2017) Kelestemur Y.; Guzelturk, B.; Erdem, O.; Olutas M.; Erdem, T.; Usanmaz, C. F.; Gungor K.; Demir, Hilmi VolkanHere we designed and synthesized CdSe/CdSe1-xTex core/crown nanoplatelets (NPLs) with controlled crown compositions by using the core-seeded-growth approach. We confirmed the uniform growth of the crown regions with well-defined shape and compositions by employing transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. By precisely tuning the composition of the CdSe1-xTex crown region from pure CdTe (x = 1.00) to almost pure CdSe doped with several Te atoms (x = 0.02), we achieved tunable excitonic properties without changing the thickness of the NPLs and demonstrated the evolution of type-II electronic structure. Upon increasing the Te concentration in the crown region, we obtained continuously tunable photoluminescence peaks within the range of ∼570 nm (for CdSe1-xTex crown with x = 0.02) and ∼660 nm (for CdSe1-xTex crown with x = 1.00). Furthermore, with the formation of the CdSe1-xTex crown region, we observed substantially improved photoluminescence quantum yields (up to ∼95%) owing to the suppression of nonradiative hole trap sites. Also, we found significantly increased fluorescence lifetimes from ∼49 up to ∼326 ns with increasing Te content in the crown, suggesting the transition from quasi-type-II to type-II electronic structure. With their tunable excitonic properties, this novel material presented here will find ubiquitous use in various efficient light-emitting and -harvesting applications.Item Open Access Colloidal nanoplatelet/conducting polymer hybrids: excitonic and material properties(American Chemical Society, 2016) Guzelturk, B.; Menk, F.; Philipps, K.; Kelestemur Y.; Olutas M.; Zentel, R.; Demir, Hilmi VolkanHere we present the first account of conductive polymer/colloidal nanoplatelet hybrids. For this, we developed DEH-PPV-based polymers with two different anchor groups (sulfide and amine) acting as surfactants for CdSe nanoplatelets, which are atomically flat semiconductor nanocrystals. Hybridization of the polymers with the nanoplatelets in the solution phase was observed to cause strong photoluminescence quenching in both materials. Through steady-state photoluminescence and excitation spectrum measurements, photoluminescence quenching was shown to result from dominant exciton dissociation through charge transfer at the polymer/nanoplatelet interfaces that possess a staggered (i.e., type II) band alignment. Importantly, we found out that sulfide-based anchors enable a stronger emission quenching than amine-based ones, suggesting that the sulfide anchors exhibit more efficient binding to the nanoplatelet surfaces. Also, shorter surfactants were found to be more effective for exciton dissociation as compared to the longer ones. In addition, we show that nanoplatelets are homogeneously distributed in the hybrid films owing to the functional polymers. These nanocomposites can be used as building blocks for hybrid optoelectronic devices, such as solar cells.Item Open Access Exciton dynamics of colloidal semiconductor quantum well stacks(Springer Netherlands, 2018) Erdem, O.; Guzelturk, B.; Olutas M.; Kelestemur Y.; Demir, Hilmi VolkanColloidal semiconductor nanoplatelets (NPLs) have recently emerged as a new class of colloidal nanocrystals. NPLs are quasi two-dimensional nanocrystals having atomically flat surfaces and have unique properties such as narrow photoluminescence (PL) emission (∼10 nm) and giant oscillator strength. NPLs can be self-assembled into stacks. These are one-dimensional superstructures that can contain tens or hundreds of NPLs in one chain. We studied how stacking modifies the optical properties of NPLs. We found that PL quantum yield and exciton lifetime are reduced with increased degree of stacking in NPL ensembles. Moreover, we showed that temperature-dependent behavior of stacked NPLs is significantly different than the nonstacked ones. We developed two statistical models that account for the ultra-fast nonradiative energy transfer within stacked NPL chains as well as nonemissive subpopulation of NPLs in the ensemble to explain the aforementioned changes when NPLs are stacked.Item Open Access Flexible and fragmentable tandem photosensitive nanocrystal skins(Royal Society of Chemistry, 2016) Akhavan S.; Uran, C.; Bozok, B.; Gungor K.; Kelestemur Y.; Lesnyak, V.; Gaponik N.; Eychmüller A.; Demir, Hilmi VolkanWe proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.Item Open Access Fluorescent heterodoped nanotetrapods as synergistically enhancing positive and negative magnetic resonance imaging contrast agents(American Chemical Society, 2016) Sharma, V. K.; Alipour, A.; Soran-Erdem Z.; Kelestemur Y.; Aykut, Z. G.; Demir, Hilmi VolkanIn this work, we report Mn-Fe heterodoped ZnSe tetrapod nanocrystals (NCs) synthesized to synergistically enhance contrast in both T1- and T2-weighted magnetic resonance imaging (MRI). The proposed NCs were prepared using a customized heteroarchitecture such that the manganese (Mn) is confined in the core and iron (Fe) in the branches of the tetrapods. The elemental composition and profile of these NCs were studied using X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, and inductively coupled plasma mass spectroscopy. Photoluminescence quantum yield of these heterodoped NCs in water is ∼30%. Magnetic measurements reveal the simultaneous presence of superparamagnetic and paramagnetic behavior in these NCs because of the coexistence of Mn2+ and Fe2+ dopants. Their potential as simultaneous positive and negative MRI contrast agents was demonstrated by relaxivity measurements and in vivo MRI. From the in vivo studies, we also found that these NCs (with a hydrodynamic diameter of 20 nm) are excreted from the body within 24 h after the injection. Therefore, these heterodoped tetrapods NCs, while being fluorescent and safe, hold great future as a synergistically enhancing dual-modal MRI contrast agent.Item Open Access High-efficiency optical gain in type-II semiconductor nanocrystals of alloyed colloidal quantum wells(American Chemical Society, 2017) Guzelturk, B.; Kelestemur Y.; Olutas M.; Li, Q.; Lian, T.; Demir, Hilmi VolkanColloidal nanocrystals having controlled size, tailored shape, and tuned composition have been explored for optical gain and lasing. Among these, nanocrystals having Type-II electronic structure have been introduced toward low-threshold gain. However, to date, their performance has remained severely limited due to diminishing oscillator strength and modest absorption cross-section. Overcoming these problems, here we realize highly efficient optical gain in Type-II nanocrystals by using alloyed colloidal quantum wells. With composition-tuned core/alloyed-crown CdSe/CdSexTe1-x quantum wells, we achieved amplified spontaneous emission thresholds as low as 26 μJ/cm2, long optical gain lifetimes (τgain ≈ 400 ps), and high modal gain coefficients (gmodal ≈ 930 cm-1). We uncover that the optical gain in these Type-II quantum wells arises from the excitations localized to the alloyed-crown region that are electronically coupled to the charge-transfer state. These alloyed heteronanostructures exhibiting remarkable optical gain performance are expected to be highly appealing for future display and lighting technologies.Item Open Access Highly efficient nonradiative energy transfer from colloidal semiconductor quantum dots to wells for sensitive noncontact temperature probing(Wiley-VCH Verlag, 2016) Olutas M.; Guzelturk, B.; Kelestemur Y.; Gungor K.; Demir, Hilmi VolkanThis study develops and shows highly efficient exciton-transferring hybrid semiconductor nanocrystal films of mixed dimensionality comprising quasi 0D and 2D colloids. Through a systematic study of time-resolved and steady-state photoluminescence spectroscopy as a function of the donor-to-acceptor molar concentration ratio and temperature, a high-efficiency nonradiative energy transfer (NRET) process from CdZnS/ZnS core/shell quantum dots (QDs) directed to atomically flat CdSe nanoplatelets (NPLs) in their solid-state thin films is uncovered. The exciton funneling in this system reaches transfer efficiency levels as high as 90% at room temperature. In addition, this study finds that with decreasing temperature exciton transfer efficiency is increased to a remarkable maximum level of ≈94%. The enhancement in the dipole-dipole coupling strength with decreasing temperature is well accounted by increasing photoluminescence quantum yield of the donor and growing spectral overlap between the donor and the acceptor. Furthermore, NRET efficiency exhibits a highly linear monotonic response with changing temperature. This makes the proposed QD-NPL composites appealing for noncontact sensitive temperature probing based on NRET efficiencies as a new metric. These findings indicate that combining colloidal nanocrystals of different dimensionality enables efficient means of temperature probing at an unprecedented sensitivity level at nanoscale through almost complete exciton transfer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators(Wiley-VCH Verlag, 2017) Sharma, M.; Gungor K.; Yeltik A.; Olutas M.; Guzelturk, B.; Kelestemur Y.; Erdem, T.; Delikanli S.; McBride, J. R.; Demir, Hilmi VolkanDoping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum. However, existing doped CQDs that are aimed for full solar spectrum LSCs suffer from moderately low quantum efficiency, intrinsically small absorption cross-section, and gradually increasing absorption profiles coinciding with the emission spectrum, which together fundamentally limit their effective usage. Here, the authors show the first account of copper doping into atomically flat colloidal quantum wells (CQWs). In addition to Stokes-shifted and tunable dopant-induced photoluminescence emission, the copper doping into CQWs enables near-unity quantum efficiencies (up to ≈97%), accompanied by substantially high absorption cross-section and inherently step-like absorption profile, compared to those of the doped CQDs. Based on these exceptional properties, the authors have demonstrated by both experimental analysis and numerical modeling that these newly synthesized doped CQWs are excellent candidates for LSCs. These findings may open new directions for deployment of doped CQWs in LSCs for advanced solar light harvesting technologies.Item Open Access Observation of biexcitons in nanocrystal solids in the presence of photocharging(American Chemical Society, 2013) Cihan, A. F.; Martinez, P. L. H.; Kelestemur Y.; Mutlugun, E.; Demir, Hilmi VolkanT In nanocrystal quantum dots (NQDs), generating multiexcitons offers an enabling tool for enhancing NQD-based devices. However, the photocharging effect makes understanding multiexciton kinetics in NQD solids fundamentally challenging, which is critically important for solid-state devices. To date, this lack of understanding and the spectral temporal aspects of the multiexciton recombination still remain unresolved in solid NQD ensembles, which is mainly due to the confusion with recombination of carriers in charged NQDs. In this work, we reveal the spectral temporal behavior of biexcitons (BXs) in the presence of photocharging using near-unity quantum yield CdSe/CdS NQDs exhibiting substantial suppression of Auger recombination. Here, recombinations of biexcitons and single excitons (Xs) are successfully resolved in the presence of trions in the ensemble measurements of time-correlated single-photon counting at variable excitation intensities and varying emission wavelengths. The spectral behaviors of BXs and Xs are obtained for three NQD samples with different core sizes, revealing the strength tunability of the X X interaction energy in these NQDs. The extraction of spectrally resolved X, BX, and trion kinetics, which are otherwise spectrally unresolved, is enabled by our approach introducing integrated time-resolved fluorescence. The results are further experimentally verified by cross-checking excitation intensity and exposure time dependencies as well as the temporal evolutions of the photoluminescence spectra, all of which prove to be consistent. The BX and X energies are also confirmed by theoretical calculations. These findings fill an important gap in understanding the spectral dynamics of multiexcitons in such NQD solids under the influence of photocharging effects, paving the way to engineering of multiexciton kinetics in nanocrystal optoelectronics, including NQD-based lasing, photovoltaics, and photodetection.Item Open Access Platelet-in-Box Colloidal Quantum Wells: CdSe/CdS@CdS Core / Crown@Shell Heteronanoplatelets(Wiley-VCH Verlag, 2016) Kelestemur Y.; Guzelturk, B.; Erdem, O.; Olutas M.; Gungor K.; Demir, Hilmi VolkanHere, the CdSe/CdS@CdS core/crown@shell heterostructured nanoplatelets (NPLs) resembling a platelet-in-box structure are developed and successfully synthesized. It is found that the core/crown@shell NPLs exhibit consistently substantially improved photoluminescence quantum yield compared to the core@shell NPLs regardless of their CdSe-core size, CdS-crown size, and CdS-shell thickness. This enhancement in quantum yield is attributed to the passivation of trap sites resulting from the critical peripheral growth with laterally extending CdS-crown layer before the vertical shell growth. This is also verified with the disappearance of the fast nonradiative decay component in the core/crown NPLs from the time-resolved fluorescence spectroscopy. When compared to the core@shell NPLs, the core/crown@shell NPLs exhibit relatively symmetric emission behavior, accompanied with suppressed lifetime broadening at cryogenic temperatures, further suggesting the suppression of trap sites. Moreover, constructing both the CdS-crown and CdS-shell regions, significantly enhanced absorption cross-section is achieved. This, together with the suppressed Auger recombination, enables the achievement of the lowest threshold amplified spontaneous emission (≈20 μJ cm−2) from the core/crown@shell NPLs among all different architectures of NPLs. These findings indicate that carefully heterostructured NPLs will play a critical role in building high-performance colloidal optoelectronic devices, which may even possibly challenge their traditional epitaxially grown thin-film based counterparts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimItem Open Access Quantum dot/light-emitting electrochemical cell hybrid device and mechanism of its operation(American Chemical Society, 2016) Frohleiks, J.; Wepfer, S.; Kelestemur Y.; Demir, Hilmi Volkan; Bacher, G.; Nannen E.A new type of light-emitting hybrid device based on colloidal quantum dots (QDs) and an ionic transition metal complex (iTMC) light-emitting electrochemical cell (LEC) is introduced. The developed hybrid devices show light emission from both active layers, which are combined in a stacked geometry. Time-resolved photoluminescence experiments indicate that the emission is controlled by direct charge injection into both the iTMC and the QD layer. The turn-on time (time to reach 1 cd/m2) at constant voltage operation is significantly reduced from 8 min in the case of the reference LEC down to subsecond in the case of the hybrid device. Furthermore, luminance and efficiency of the hybrid device are enhanced compared to reference LEC directly after device turn-on by a factor of 400 and 650, respectively. We attribute these improvements to an increased electron injection efficiency into the iTMC directly after device turn-on. © 2016 American Chemical Society.Item Open Access Stacking in colloidal nanoplatelets: tuning excitonic properties(American Chemical Society, 2014) Guzelturk, B.; Erdem, O.; Olutas M.; Kelestemur Y.; Demir, Hilmi VolkanColloidal semiconductor quantum wells, also commonly known as nanoplatelets (NPLs), have arisen among the most promising materials for light generation and harvesting applications. Recently, NPLs have been found to assemble in stacks. However, their emerging characteristics essential to these applications have not been previously controlled or understood. In this report, we systematically investigate and present excitonic properties of controlled column-like NPL assemblies. Here, by a controlled gradual process, we show that stacking in colloidal quantum wells substantially increases exciton transfer and trapping. As NPLs form into stacks, surprisingly we find an order of magnitude decrease in their photoluminescence quantum yield, while the transient fluorescence decay is considerably accelerated. These observations are corroborated by ultraefficient Forster resonance energy transfer (FRET) in the stacked NPLs, in which exciton migration is estimated to be in the ultralong range (>100 nm). Homo-FRET (i.e., FRET among the same emitters) is found to be ultraefficient, reaching levels as high as 99.9% at room temperature owing to the close-packed collinear orientation of the NPLs along with their large extinction coefficient and small Stokes shift, resulting in a large Forster radius of similar to 13.5 nm. Consequently, the strong and long-range homo-FRET boosts exciton trapping in nonemissive NPLs, acting as exciton sink centers, quenching photoluminescence from the stacked NPLs due to rapid nonradiative recombination of the trapped excitons. The rate-equation-based model, which considers the exciton transfer and the radiative and nonradiative recombination within the stacks, shows an excellent match with the experimental data. These results show the critical significance of stacking control in NPL solids, which exhibit completely different signatures of homo-FRET as compared to that in colloidal nanocrystals due to the absence of inhomogeneous broadening.Item Open Access Temperature-dependent emission kinetics of colloidal semiconductor nanoplatelets strongly modified by stacking(American Chemical Society, 2016) Erdem, O.; Olutas M.; Guzelturk, B.; Kelestemur Y.; Demir, Hilmi VolkanWe systematically studied temperature-dependent emission kinetics in solid films of solution-processed CdSe nanoplatelets (NPLs) that are either intentionally stacked or nonstacked. We observed that the steady-state photoluminescence (PL) intensity of nonstacked NPLs considerably increases with decreasing temperature, whereas there is only a slight increase in stacked NPLs. Furthermore, PL decay time of the stacked NPL ensemble is comparatively much shorter than that of the nonstacked NPLs, and this result is consistent at all temperatures. To account for these observations, we developed a probabilistic model that describes excitonic processes in a stack using Markov chains, and we found excellent agreement between the model and experimental results. These findings develop the insight that the competition between the radiative channels and energy transfer-assisted hole trapping leads to weakly temperature-dependent PL intensity in the case of the stacked NPL ensembles as compared to the nonstacked NPLs lacking strong energy transfer. This study shows that it is essential to account for the effect of NPL stacking to understand their resulting PL emission properties.Item Open Access Type-tunable amplified spontaneous emission from core-seeded CdSe/CdS nanorods controlled by exciton-exciton interaction(Royal Society of Chemistry, 2014) Kelestemur Y.; Cihan, A. F.; Guzelturk, B.; Demir, Hilmi VolkanType-tunable optical gain performance of core-seeded CdSe/CdS nanorods is studied via two-photon optical pumping. Controlling the exciton-exciton interaction by varying the core and shell size, blue-shifted and red-shifted modes of amplified spontaneous emission are systematically demonstrated and their type attributions are verified by time-resolved emission kinetics. This journal is