Browsing by Author "Kelestemur, Yusuf"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Blue-and red-shifting amplified spontaneous emission of CdSe/CdS core/shell colloidal quantum dots(IEEE, 2013) Kelestemur, Yusuf; Cihan, Ahmet Fatih; Güzeltürk, Burak; Yerli, Ozan; Kurum, U.; Yaglioglu H.G.; Elmali, A.; Demir, Hilmi VolkanWe report blue- and red-shifting amplified spontaneous emission of CdSe/CdS quantum dots, controlled by varying core/shell dimensions and modifying exciton-exciton interactions, with low optical gain threshold of two-photon absorption pumping. © 2013 The Optical Society.Item Open Access Heterodoped manoparticles as dual-mode contrast agent for MRI(IEEE, 2018) Alipour, Akbar; Sharma, Vijay Kumar; Soran-Erdem, Zeliha; Kelestemur, Yusuf; Aykut, Zaliha Gamze; Demir, Hilmi VolkanThe purpose of this work is to synthesize Mn-Fe heterodoped ZnSe tetrapod nanocrystals (NCs) as dualmode MRI contrast agent to offer synergetic beneficial over the single contrast tracer. Also, in vivo feasibility of the Mn-Fe heterodoped ZnSe tetrapod NCs as a dualmode contrast agent has been studied.Item Open Access Highly stable multicrown heterostructures of type-II nanoplatelets for ultralow threshold optical gain(American Chemical Society, 2019) Dede, Didem; Taghipour, Nima; Quliyeva, Ulviyya; Sak, Mustafa; Kelestemur, Yusuf; Güngör, Kıvanç; Demir, Hilmi VolkanSolution-processed type-II quantum wells exhibit outstanding optical properties, which make them promising candidates for light-generating applications including lasers and LEDs. However, they may suffer from poor colloidal stability under ambient conditions and show strong tendency to assemble into face-to-face stacks. In this work, to resolve the colloidal stability and uncontrolled stacking issues, we proposed and synthesized CdSe/CdSe1–xTex/CdS core/multicrown heteronanoplatelets (NPLs), controlling the amount of Te up to 50% in the crown without changing their thicknesses, which significantly increases their colloidal and photostability under ambient conditions and at the same time preserving their attractive optical properties. Confirming the final lateral growth of CdS sidewalls with X-ray photoelectron spectroscopy, energy-dispersive analysis, and photoelectron excitation spectroscopy, we found that the successful coating of this CdS crown around the periphery of conventional type-II NPLs prevents the unwanted formation of needle-like stacks, which results in reduction of the undesired scattering losses in thin-film samples of these NPLs. Owing to highly efficient exciton funneling from the outmost CdS crown accompanied by the reduced scattering and very low waveguide loss coefficient (∼18 cm–1), ultralow optical gain thresholds of multicrown type-II NPLs were achieved to be as low as 4.15 μJ/cm2 and 2.48 mJ/cm2 under one- and two-photon absorption pumping, respectively. These findings indicate that the strategy of using engineered advanced heterostructures of nanoplatelets provides solutions for improved colloidal stability and enables enhanced photonic performance.Item Open Access Highly stable, near-unity efficiency atomically flat semiconductor nanocrystals of CdSe/ZnS hetero-nanoplatelets enabled by ZnS-Shell hot-injection growth(WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2019) Yemliha, Yemliha; Quliyeva, Ulviyya; Güngör, Kıvanç; Erdem, Onur; Kelestemur, Yusuf; Mutlugün, Evren; Kovalenko, M.; Demir, Hilmi VolkanColloidal semiconductor nanoplatelets (NPLs) offer important benefits in nanocrystal optoelectronics with their unique excitonic properties. For NPLs, colloidal atomic layer deposition (c‐ALD) provides the ability to produce their core/shell heterostructures. However, as c‐ALD takes place at room temperature, this technique allows for only limited stability and low quantum yield. Here, highly stable, near‐unity efficiency CdSe/ZnS NPLs are shown using hot‐injection (HI) shell growth performed at 573 K, enabling routinely reproducible quantum yields up to 98%. These CdSe/ZnS HI‐shell hetero‐NPLs fully recover their initial photoluminescence (PL) intensity in solution after a heating cycle from 300 to 525 K under inert gas atmosphere, and their solid films exhibit 100% recovery of their initial PL intensity after a heating cycle up to 400 K under ambient atmosphere, by far outperforming the control group of c‐ALD shell‐coated CdSe/ZnS NPLs, which can sustain only 20% of their PL. In optical gain measurements, these core/HI‐shell NPLs exhibit ultralow gain thresholds reaching ≈7 µJ cm−2. Despite being annealed at 500 K, these ZnS‐HI‐shell NPLs possess low gain thresholds as small as 25 µJ cm−2. These findings indicate that the proposed 573 K HI‐shell‐grown CdSe/ZnS NPLs hold great promise for extraordinarily high performance in nanocrystal optoelectronics.Item Open Access Observation of biexcitons in the presence of trions generated via sequential absorption of multiple photons in colloidal quantum dot solids(IEEE, 2012) Cihan, Ahmet Fatih; Hernandez-Martinez Pedro L.; Kelestemur, Yusuf; Demir, Hilmi VolkanMulti exciton generation (MEG) and multi exciton recombination (MER) in semiconductor quantum dots (QDs) have recently attracted significant scientific interest as a possible means to improve device efficiencies [1-5]. Convenient bandgap tunability, easy colloidal synthesis, and solution-based processability of these QDs make them further attractive for such device applications using MEG and MER. For example, recent theoretical and experimental studies have shown that MEG enables >100% peak external quantum efficiency where the generated multi excitons (MEs) are collected in a simple QD solar cell structure [1]. Furthermore, MEG has also been shown in QD photodetectors exhibiting substantially increased photocurrent levels [2]. Another promising application for MEs is the use of QDs as an alternative gain medium based on MER for lasers. Although MEG is very promising and supported with quite persuasive reports, there are still some debatable issues that need to be clarified. One of the issues that have generated great debates in the field has been the confusion of MER with the recombination of trions, which takes place in photocharged QDs. To utilize MEG and MER in practical devices such as QD solar cells and QD lasing devices, these phenomena need to be well understood. Here, we showed distinct spectrally-resolved temporal behavior of biexciton (BX), single exciton (X) and trion radiative recombinations in near unity quantum yield (QY) quasi-type II CdSe/CdS core/shell nanocrystal QDs. Upon sequential absorption of multiple photons, the extraction of Xs, BXs, and trions were achieved using time correlated single photon counting (TCSPC) measurements performed on low concentration thin film samples of these QDs at different emission wavelengths. The QDs were embedded in PMMA medium to obtain homogeneous samples and avoid Förster-type nonradiative energy transfer (NRET) between them. Here to extract Xs, BXs, and trions, we devised a new analysis approach for the time decays of the QDs that allowed us to attribute the physical events to their corresponding time decay terms, which were further verified with their excitation intensity dependencies [6]. © 2012 IEEE.Item Open Access Orientation-controlled nonradiative energy transfer to colloidal nanoplatelets: engineering dipole orientation factor(American Chemical Society, 2019) Erdem, Onur; Güngör, Kıvanç; Güzeltürk, Burak; Tanrıöver, İbrahim; Sak, Mustafa; Olutaş, Murat; Dede, Didem; Kelestemur, Yusuf; Demir, Hilmi VolkanWe proposed and showed strongly orientation-controlled Förster resonance energy transfer (FRET) to highly anisotropic CdSe nanoplatelets (NPLs). For this purpose, we developed a liquid–air interface self-assembly technique specific to depositing a complete monolayer of NPLs only in a single desired orientation, either fully stacked (edge-up) or fully nonstacked (face-down), with near-unity surface coverage and across large areas over 20 cm2. These NPL monolayers were employed as acceptors in an energy transfer working model system to pair with CdZnS/ZnS core/shell quantum dots (QDs) as donors. We found the resulting energy transfer from the QDs to be significantly accelerated (by up to 50%) to the edge-up NPL monolayer compared to the face-down one. We revealed that this acceleration of FRET is accounted for by the enhancement of the dipole–dipole interaction factor between a QD-NPL pair (increased from 1/3 to 5/6) as well as the closer packing of NPLs with stacking. Also systematically studying the distance-dependence of FRET between QDs and NPL monolayers via varying their separation (d) with a dielectric spacer, we found out that the FRET rate scales with d–4 regardless of the specific NPL orientation. Our FRET model, which is based on the original Förster theory, computes the FRET efficiencies in excellent agreement with our experimental results and explains well the enhancement of FRET to NPLs with stacking. These findings indicate that the geometrical orientation of NPLs and thereby their dipole interaction strength can be exploited as an additional degree of freedom to control and tune the energy transfer rate.Item Open Access Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems(Institute of Physics Publishing, 2020) Trotsiuk, L.; Muravitskaya, A.; Kulakovich, O.; Guzatov, D.; Ramanenka, A.; Kelestemur, Yusuf; Demir, Hilmi Volkan; Gaponenko, S.Plasmon–exciton coupling is of great importance to many optical devices and applications. One of the coupling manifestations is plasmon-enhanced fluorescence. Although this effect is demonstrated in numerous experimental and theoretical works, there are different particle shapes for which this effect is not fully investigated. In this work electrostatic complexes of gold nanorods and CdSe/CdZnS quantum dots were studied. Double-resonant gold nanorods have an advantage of the simultaneous enhancement of the absorption and emission when the plasmon bands match the excitation and fluorescence wavelengths of an emitter. A relationship between the concentration of quantum dots in the complexes and the enhancement factor was established. It was demonstrated that the enhancement factor is inversely proportional to the concentration of quantum dots. The maximal fluorescence enhancement by 10.8 times was observed in the complex with the smallest relative concentration of 2.5 quantum dots per rod and approximately 5 nm distance between them. Moreover, the influence of quantum dot location on the gold nanorod surface plays an important role. Theoretical study and experimental data indicate that only the position near the nanorod ends provides the enhancement. At the same time, the localization of quantum dots on the sides of the nanorods leads to the fluorescence quenching.Item Open Access Silica nanoparticle formation by using droplet-based microreactor(American Society of Mechanical Engineers, 2017) Nikdoost, Arsalan; Özkan, Alican; Kelestemur, Yusuf; Demir, Hilmi Volkan; Erdem, E. YeganThis paper describes a method for the synthesis of silica nanoparticles that can be later used for coating of quantum dots inside a microfluidic reactor. Here, a droplet-based system is used where two reagents were mixed inside the droplets to obtain silica. Particles in the size range of 25±2.7 nm were obtained with comparable size distribution to controlled batchwise synthesis methods. This method is suitable to be used later to coat CdSe nanoparticles inside the microreactor.Item Open Access Understanding the journey of dopant copper ions in atomically flat colloidal nanocrystals of CdSe nanoplatelets using partial cation exchange reactions(American Chemical Society, 2018) Sharma, Manoj; Olutaş, Murat; Yeltik, Aydan; Kelestemur, Yusuf; Sharma, Ashma; Delikanlı, Savaş; Güzeltürk, Burak; Güngör, Kıvanç; McBride, J. R.; Demir, Hilmi VolkanUnique electronic and optical properties of doped semiconductor nanocrystals (NCs) have widely stimulated a great deal of interest to explore new effective synthesis routes to achieve controlled doping for highly efficient materials. In this work, we show copper doping via postsynthesis partial cation exchange (CE) in atomically flat colloidal semiconductor nanoplatelets (NPLs). Here chemical reactivity of different dopant precursors, reaction kinetics, and shape of seed NPLs were extensively elaborated for successful doping and efficient emission. Dopant-induced Stokes-shifted and tunable photoluminescence emission (640 to 830 nm) was observed in these Cu-doped CdSe NPLs using different thicknesses and heterostructures. High quantum yields (reaching 63%) accompanied by high absorption cross sections (>2.5 times) were obtained in such NPLs compared to those of Cu-doped CdSe colloidal quantum dots (CQDs). Systematic tuning of the doping level in these two-dimensional NPLs provides an insightful understanding of the chemical dopant based orbital hybridization in NCs. The unique combination of doping via the partial CE method and precise control of quantum confinement in such atomically flat NPLs originating from their magic-sized vertical thickness exhibits an excellent model platform for studying photophysics of doped quantum confined systems. Copyright