Browsing by Author "Kazemi, M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Analysis of DF relay selection in massive MIMO systems with hardware ımpairments(IEEE, 2020) Kazemi, M.; Mohammadi, A.; Duman, Tolga M.We consider a massive multiple-input multiple-output (m-MIMO) system in which a source communicates with a destination with the help of multiple single-antenna decode-and-forward (DF) relays. Employing optimal relay selection, we analyze the system performance in presence of hardware impairments (HWI) for two m-MIMO scenarios: massive-antenna source and single-antenna destination (m-MIMO I), and massive-antenna source and destination (m-MIMO II). We obtain lower bounds on the average signal-to-noise plus distortion ratio (SNDR) of the system and show that in the m-MIMO II regime, the HWI levels at the relays become the only limiting factors. Employing extreme value theory, we demonstrate that as the number of relays increases the end-to-end SNDR of the system tends to Gumbel and Weibull distributions for the m-MIMO I and m-MIMO II systems, respectively. In addition, for both arbitrary numbers of source and destination antennas and m-MIMO scenarios, we provide closed form expressions for optimal power allocation between the source and the selected relay, and the effects of HWI level distributions between the receiving and the transmitting parts of the relay (which can be exploited for optimal system design under cost constraints).Item Open Access Discrete-phase constant envelope precoding for massive MIMO systems(Institute of Electrical and Electronics Engineers Inc., 2017) Kazemi, M.; Aghaeinia, H.; Duman, T. M.We consider downlink of a multiuser massive multiple-input multiple-output (MIMO) system and focus on reducing the hardware costs by using a single common power amplifier and separate phase shifters (PSs) for antenna front-ends. In the previous literature, the use of analog PSs in this setup has been considered. Here, we study the use of practical digital PSs, which only support a limited set of discrete phases. Considering the sum of interference powers as a metric, we formulate the corresponding nonlinear discrete optimization problem and solve for the phases to be used during transmission. We devise a low-complexity algorithm, which employs a trellis structure providing suboptimal, but efficient and effective solutions. We demonstrate via examples that the proposed solutions have comparable performance to conventional analog PS-based algorithms. Furthermore, we prove that by utilizing discrete-phase constant envelope precoding, the interference can be made arbitrarily small by increasing the number of antennas. Therefore, the asymptotic gains promised by massive MIMO systems are preserved. We also obtain closed-form expressions for the rate loss due to errors in the phase and amplitude of the PSs, for both low and high SNR regimes.