Browsing by Author "Kavanaugh, J. P."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Highly doped silicon micromachined photonic crystals(IEEE, Piscataway, NJ, United States, 2000) Temelkuran, B.; Bayındır, Mehmet; Özbay, Ekmel; Kavanaugh, J. P.; Sigalas, M. M.; Tuttle, G.Summary form only given. Photonic crystals are periodic structures with the property of reflecting the electromagnetic (EM) waves in all directions within a certain frequency range. These structures can be used to control and manipulate the behaviour of EM waves. Although earlier work concentrated on building these crystals with dielectric materials, there are certain advantages of introducing metals to photonic crystals. First, metals offer a high rejection rate when compared to the dielectric crystals. Second, for microwave applications, the dimensions of metallic crystals can be kept much smaller than the minimum dimensions needed for a typical dielectric crystal. In the paper, we propose a method for the fabrication of layer-by-layer metallic photonic crystals. A similar method had been used by Ozbay et al. to fabricate dielectric photonic crystals using silicon wafers. We fabricated a new layer-by-layer photonic crystal using highly doped silicon wafers.Item Open Access Photonic-crystal-based resonant-cavity-enhanced detectors(IEEE, 1998) Temelkuran, Burak; Özbay, Ekmel; Kavanaugh, J. P.; Tuttle, G.; Ho, K. M.A layer-by-layer three-dimensional photonic crystal, with a full photonic bandgap (PBG) in all directions is proposed. The electrical fields in the cavities of this crystal are usually enhanced, and by placing active devices such as resonant cavity enhanced (RCE) photodetectors and light emitting diodes. The RCE effect is demonstrated by placing microwave detectors within localized modes of photonic crystal, along with a monopole antenna. A network analyzer measured the enhanced field. Such RCE detectors are more sensitive and efficient as compared to conventional detectors, and can be used for various applications where sensitivity and efficiency are important parameters.Item Open Access Quasimetallic silicon micromachined photonic crystals(American Institute of Physics, 2001) Temelkuran, B.; Bayındır, Mehmet; Özbay, Ekmel; Kavanaugh, J. P.; Sigalas, M. M.; Tuttle, G.We report on fabrication of a layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques. The crystals, built using (100) silicon wafers, resulted in an upper stop band edge at 100 GHz. The transmission and defect characteristics of these structures were found to be analogous to metallic photonic crystals. We also investigated the effect of doping concentration on the defect characteristics. The experimental results agree well with predictions of the transfer matrix method simulations. (C) 2001 American Institute of Physics.Item Open Access Resonant cavity enhanced detectors embedded in photonic crystals(American Institute of Physics, 1998) Temelkuran, B.; Özbay, Ekmel; Kavanaugh, J. P.; Tuttle, G.; Ho, K. M.We report a resonant cavity enhanced (RCE) detector built around a three-dimensional photonic band gap crystal. The RCE detector was built by placing a monopole antenna within the localized modes of planar and boxlike defectstructures. The enhanced electric field around these defectstructures were then measured by a microwave detector and a network analyzer. We measured a power enhancement factor of 3450 for planar cavity structures. A Fabry–Perot cavity model was used to understand and predict resonant cavity enhancement in this structure. The tuning bandwidth of the RCE detector extends from 10.5 to 12.8 GHz, which corresponds to the full photonic band gap by the crystal. These RCE detectors have increased sensitivity and efficiency when compared to conventional detectors, and can be used for various applications. © 1998 American Institute of Physics