Browsing by Author "Körpeoǧlu, İ."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Power efficient data gathering and aggregation in wireless sensor networks(Association for Computing Machinery, 2003) Tan, H. Ö.; Körpeoǧlu, İ.Recent developments in processor, memory and radio technology have enabled wireless sensor networks which are deployed to collect useful information from an area of interest The sensed data must be gathered and transmitted to a base station where it is further processed for end-user queries. Since the network consists of low-cost nodes with limited battery power, power efficient methods must be employed for data gathering and aggregation in order to achieve long network lifetimes. In an environment where in a round of communication each of the sensor nodes has data to send to a base station, it is important to minimize the total energy consumed by the system in a round so that the system lifetime is maximized. With the use of data fusion and aggregation techniques, while minimizing the total energy per round, if power consumption per node can be balanced as well, a near optimal data gathering and routing scheme can be achieved in terms of network lifetime. So far, besides the conventional protocol of direct transmission, two elegant protocols called LEACH and PEGASIS have been proposed to maximize the lifetime of a sensor network. In this paper, we propose two new algorithms under name PEDAP (Power Efficient Data gathering and Aggregation Protocol), which are near optimal minimum spanning tree based routing schemes, where one of them is the power-aware version of the other. Our simulation results show that our algorithms perform well both in systems where base station is far away from and where it is in the center of the field. PEDAP achieves between 4x to 20x improvement in network lifetime compared with LEACH, and about three times improvement compared with PEGASIS.Item Open Access Reducing query overhead through route learning in unstructured peer-to-peer network(Academic Press, 2009-05) Çıracı, Salim; Körpeoǧlu, İ.; Ulusoy, ÖzgürIn unstructured peer-to-peer networks, such as Gnutella, peers propagate query messages towards the resource holders by flooding them through the network. This is, however, a costly operation since it consumes node and link resources excessively and often unnecessarily. There is no reason, for example, for a peer to receive a query message if the peer has no matching resource or is not on the path to a peer holding a matching resource. In this paper, we present a solution to this problem, which we call Route Learning, aiming to reduce query traffic in unstructured peer-to-peer networks. In Route Learning, peers try to identify the most likely neighbors through which replies can be obtained to submitted queries. In this way, a query is forwarded only to a subset of the neighbors of a peer, or it is dropped if no neighbor, likely to reply, is found. The scheme also has mechanisms to cope with variations in user submitted queries, like changes in the keywords. The scheme can also evaluate the route for a query for which it is not trained. We show through simulation results that when compared to a pure flooding based querying approach, our scheme reduces bandwidth overhead significantly without sacrificing user satisfaction. © 2008 Elsevier Ltd. All rights reserved.