BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jafari, Nazanin"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An inference attack on genomic data using kinship, complex correlations, and phenotype information
    (IEEE, 2018) Deznabi, Iman; Mobayen, Mohammad; Jafari, Nazanin; Taştan, Öznur; Ayday, Erman
    Abstract—Individuals (and their family members) share (partial) genomic data on public platforms. However, using special characteristics of genomic data, background knowledge that can be obtained from the Web, and family relationship between the individuals, it is possible to infer the hidden parts of shared (and unshared) genomes. Existing work in this field considers simple correlations in the genome (as well as Mendel’s law and partial genomes of a victim and his family members). In this paper, we improve the existing work on inference attacks on genomic privacy. We mainly consider complex correlations in the genome by using an observable Markov model and recombination model between the haplotypes. We also utilize the phenotype information about the victims. We propose an efficient message passing algorithm to consider all aforementioned background information for the inference. We show that the proposed framework improves inference with significantly less information compared to existing work.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Parallel streaming graph partitioning utilizing multilevel framework
    (2018-08) Jafari, Nazanin
    Graph partitioning is widely used for e cient parallelization of a variety of applications. Streaming graph partitioning is a one pass partitioning solution provided to overcome high computation costs of o ine graph partitioners. Even though these streaming algorithms can be used for successively repartitioning, aiming at further improvements in partitioning qualities, quality improvements is limited to few passes that make o ine graph partitioning tools still a desirable solution for graph partitioning due to the generated high quality partitions. We propose a multilevel approach using streaming algorithms that can alleviate tradeo between quality and performance in graph partitioning problem. Moreover, our OpenMP based multi-threaded implementation, can generate fast and highly scalable solutions compared to mt-metis, a multi-threaded solution for METIS, the state-of-the-art o ine high quality graph partitioning tool. Our results show that our method can produce up to fteen times faster and more scalable results in large graph datasets. We also show that our method can improve quality of partitions signi cantly compared to state-of-the-art streaming graph partitioning algorithm LDG after repartitioning several times. On average we produce partitions with 29% better qualities than LDG algorithm.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback