Browsing by Author "Islam, K."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Comparative study of thin film n-i-p a-Si: H solar cells to investigate the effect of absorber layer thickness on the plasmonic enhancement using gold nanoparticles(Elsevier Ltd, 2015) Islam, K.; Chowdhury F.I.; Okyay, Ali Kemal; Nayfeh, A.In this paper, the effect of gold nanoparticles on n-i-p a-Si:H solar cells with different intrinsic layer (i-layer) thicknesses has been studied. 100nm and 500nm i-layer based n-i-p a-Si:H solar cells were fabricated and colloidal gold (Au) nanoparticles dispersed in water-based solution were spin-coated on the top surface of the solar cells. The Au nanoparticles are of spherical shape and have 100nm diameter. Electrical and quantum efficiency measurements were carried out and the results show an increase in short-circuit current density (Jsc), efficiency and external quantum efficiency (EQE) with the incorporation of the nanoparticles on both cells. Jsc increases from 5.91mA/cm2 to 6.5mA/cm2 (~10% relative increase) and efficiency increases from 3.38% to 3.97% (~17.5% relative increase) for the 100nm i-layer solar cell after plasmonic enhancement whereas Jsc increases from 9.34mA/cm2 to 10.1mA/cm2 (~7.5% relative increase) and efficiency increases from 4.27% to 4.99% (~16.9% relative increase) for the 500nm i-layer cell. The results show that plasmonic enhancement is more effective in 100nm than 500nm i-layer thickness for a-Si:H solar cells. Moreover, the results are discussed in terms of light absorption and electron hole pair generation. © 2015 Elsevier Ltd.Item Open Access Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells(Elsevier Ltd, 2014-05) Islam, K.; Alnuaimi, A.; Battal, E.; Okyay, Ali Kemal; Nayfeh, A.In this work, the effect of gold (Au) nanoparticles on the performance of a-Si:H solar cells is investigated experimentally. The solar cell stack is grown on a highly doped p-type Si wafer and consists of 20nm heavily doped p-type a-Si, 500nm undoped a-Si, 20nm heavily doped n-type a-Si and finally 80nm Indium Tin Oxide (ITO) on the top. Au nanoparticles of 10, 20, 50, 80, 100, 200 and 400nm are spin coated on top of the ITO before metallization. The plasmonic effect of the Au nanoparticles allows for additional scattering at the surface thus reducing the overall reflectivity. The larger the nanoparticle size the more scattering is obtained and the median reflectivity drops from about 23% to 18%. The results show an increase in the short-circuit current density (Jsc) and efficiency with increasing nanoparticle size. The Jsc increases from 9.34 to 10.1mA/cm2. In addition, the efficiency increases from 4.28% to 5.01%. © 2014 Elsevier Ltd.Item Open Access Improved efficiency of thin film a-Si:H solar cells with Au nanoparticles(Institute of Electrical and Electronics Engineers Inc., 2013) Islam, K.; Alnuaimi, A.; Okyay, Ali Kemal; Nayfeh, A.In this work, the effect of Au nanoparticles on the performance of a-Si:H solar cells is investigated experimentally. Au nanoparticles of 10, 20, 50, 80, 100, 200 and 400 nm are spin coated on ITO before metallization. The results show an increase in the Jsc and efficiency with increasing nanoparticle size. The Jsc increases from 9.34 mA/cm2 to 10.1 mA/cm2. In addition, the efficiency increases from 4.28% to 5.01%. © 2013 IEEE.